Wu, Yi’s team published research in European Food Research and Technology in 2021-10-31 | CAS: 23783-42-8

European Food Research and Technology published new progress about Alcohols Role: ANT (Analyte), COS (Cosmetic Use), FFD (Food or Feed Use), ANST (Analytical Study), BIOL (Biological Study), USES (Uses). 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, SDS of cas: 23783-42-8.

Wu, Yi published the artcileApplication of GC × GC coupled with TOF-MS for the trace analysis of chemical components and exploration the characteristic aroma profile of essential oils obtained from two tree peony species (Paeonia rockii and Paeonia ostii), SDS of cas: 23783-42-8, the main research area is Paeonia rockii ostii essential oil aroma GC TOF MS.

Tree peony essential oil (EO) is a critical material for flavor and function in the industrial fields of perfume, medicine and food. To conduct an overall anal. of different varieties of tree peony EOs, the composition, aroma characteristics and antioxidant activity of ZiBan and FengDan EOs were analyzed by two-dimensional gas chromatog. and time-of-flight mass spectrometry (GC × GC-TOF/MS) and the odor activity value (OAV). A total of 151 and 123 compounds were identified in ZiBan and FengDan EOs, resp., in which ZiBan EO was characterized by alc., alkane and acid, and FengDan EO was represented by aldehyde, alc. and terpene. Nevertheless, there were great differences in the content of coexisting substances in the two kinds of EOs. The aroma result indicated that the characteristic aroma and intensity of the two kinds of tree peony EOs were completely different; the aroma of ZiBan EO was mainly composed of fruity and floral aromas, whereas that of FengDan EO primarily consisted of fruity, fatty, grass and floral odors. The antioxidant activities of ZiBan EO was better than that of FengDan EO. The total antioxidant activities of ZiBan and FengDan EOs were found to be 0.020 mg Vc/mL EO and 0.003 mg Vc/mL EO, while the DPPH radical scavenging abilities of ZiBan and FengDan EOs were 24.77% and 21.60%, resp.

European Food Research and Technology published new progress about Alcohols Role: ANT (Analyte), COS (Cosmetic Use), FFD (Food or Feed Use), ANST (Analytical Study), BIOL (Biological Study), USES (Uses). 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, SDS of cas: 23783-42-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Konishi, Hiroaki’s team published research in ChemistrySelect in 2019 | CAS: 143-24-8

ChemistrySelect published new progress about Enthalpy Role: PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses). 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Konishi, Hiroaki published the artcileCharge and Discharge Reactions of a Lead Fluoride Electrode in a Liquid-Based Electrolyte for Fluoride Shuttle Batteries:-The Role of Triphenylborane as an Anion Acceptor-, Synthetic Route of 143-24-8, the main research area is lead fluoride liquid triphenylborane anion charge discharge.

Lead fluoride (PbF2) is a promising electrode material for fluoride shuttle batteries (FSBs) owing to its high theor. capacity (219 mAh g-1). In this study, the discharge and charge capacities of a PbF2 electrode were measured using a bis[2-(2-methoxyethoxy)ethyl] ether containing cesium fluoride and triphenylborane as an electrolyte. A high specific capacity was maintained during both the discharge and charge processes in the first cycle, but the capacity decreased from the first charge process to the following discharge process. To clarify the electrochem. reaction mechanism, the dissolution and change in the electronic state of Pb at the PbF2 electrode during the discharge and charge processes were evaluated via at. absorption spectrometry (AAS) and XPS. The results obtained from AAS and XPS indicated that Pb was formed during the discharge process. Conversely, the formation of PbF2 and dissolution of Pb coexisted within the wide range of charge process. The PbF2 could react in the following cycle, but the dissolved Pb was unable to contribute to the following discharge/charge reaction. Therefore, after the initial charge process, the capacity decreased.

ChemistrySelect published new progress about Enthalpy Role: PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses). 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Benkovics, Tamas’s team published research in Journal of the American Chemical Society in 2022-04-06 | CAS: 143-24-8

Journal of the American Chemical Society published new progress about Cyclization. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Quality Control of 143-24-8.

Benkovics, Tamas published the artcileDiverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454, Quality Control of 143-24-8, the main research area is transition metal thiophosphate enzyme catalytic stereoselective synthesis cyclization nucleotide; STING gene agonist cyclic dinucleotide MK1454 stimulator thiophosphate fluorination.

As practitioners of organic chem. strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asym. construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.

Journal of the American Chemical Society published new progress about Cyclization. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Quality Control of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Klepel, Florian’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2021 | CAS: 23783-42-8

Chemical Communications (Cambridge, United Kingdom) published new progress about Azo compounds, aromatic Role: PEP (Physical, Engineering or Chemical Process), RCT (Reactant), SPN (Synthetic Preparation), PROC (Process), RACT (Reactant or Reagent), PREP (Preparation). 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Application In Synthesis of 23783-42-8.

Klepel, Florian published the artcilePhoto-responsive host-guest complexation directs dynamic covalent condensation of phenyl boronic acid and D-fructose, Application In Synthesis of 23783-42-8, the main research area is photoresponsive host guest complexation directs dynamic covalent condensation; dynamic combinatorial libraries mol recognition; dynamic covalent system responds rapidly conformation change.

Inspired by the way templates have been used to drive dynamic combinatorial libraries by mol. recognition, we exploited the photo-responsive host-guest interaction of an azo-based photoswitch with permethylated cyclodextrin to reversibly manipulate the dynamic covalent interaction of a Ph boronic acid and D-fructose by irradiation with light.

Chemical Communications (Cambridge, United Kingdom) published new progress about Azo compounds, aromatic Role: PEP (Physical, Engineering or Chemical Process), RCT (Reactant), SPN (Synthetic Preparation), PROC (Process), RACT (Reactant or Reagent), PREP (Preparation). 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Application In Synthesis of 23783-42-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ren, Muqing’s team published research in ACS Catalysis in 2021-02-05 | CAS: 143-24-8

ACS Catalysis published new progress about Biomimetics. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, SDS of cas: 143-24-8.

Ren, Muqing published the artcileBioinspired Redox Mediator in Lithium-Oxygen Batteries, SDS of cas: 143-24-8, the main research area is superoxide dismutase biomimetic redox mediator activated charcoal.

LiO2 is an intermediate formed in aprotic Li-O2 and Li-air batteries during an oxygen reduction reaction (ORR). The soluble LiO2 triggers undesirable side reactions, such as a nucleophilic reaction and the formation of the byproduct Li2CO3 upon reaction with the electrolyte and substrate, resulting in irreversible redox reactions and causing a low Coulombic efficiency with poor cycling durability. Inspired by superoxide dismutase (SOD) in biol. systems, we hypothesized that SOD mimetics could likewise be applied in Li-O2 and Li-air batteries, thereby prolonging the battery cycle life. Oxidized activated charcoal (OAC) is known to be one SOD mimetic with fast kinetics and a high turnover. Therefore, OAC was added to a dual polymer gel electrolyte as a redox mediator. The OAC redox mechanism is well illustrated in quasi-solid Li-O2 batteries, and the battery stability was significantly improved in the presence of OAC. Furthermore, the best Li-O2 battery containing OAC demonstrated stable galvanostatic charge/discharge performance for ~300 cycles (3000 h) with a cutoff capacity of 0.4 mAh cm-2. In addition, under a discharge cutoff potential of 2.0 V, the discharge capacity of the best Li-O2 battery is ~37.0 mAh cm-2.

ACS Catalysis published new progress about Biomimetics. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, SDS of cas: 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kim, Yun-Hi’s team published research in Polymer in 45 | CAS: 146370-51-6

Polymer published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Application of 1-((2-Ethylhexyl)oxy)-4-methoxybenzene.

Kim, Yun-Hi published the artcileSynthesis and characterization of poly(terphenylenevinylene) derivatives containing alkoxy substituents and (or) phenyl pendant group, Application of 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, the publication is Polymer (2004), 45(8), 2525-2532, database is CAplus.

The blue electroluminescent polymers, poly(terphenylenevinylene) derivatives that have advantages of PPP and PPV, were prepared by Suzuki coupling reaction. The structure and properties of the polymers were analyzed by various spectroscopic methods. Poly(MHTPPV) and poly(TPPV) with Ph pendant group in a vinyl bridge showed blue shifted absorption spectra, large band gap and enhanced thermal stability as compared with that of poly(MHTPV). The PL spectra of the films of the polymers showed maximum peaks at 450-460 nm, which are pure blue emissions. The blue electroluminescence (λmax=450-460 nm) was obtained with the turn on voltage of 8-10 V, when the simple light-emitting diodes of ITO/polymer/Al were fabricated. The excimer emission due to interchain interaction was reduced by the introduction of substituents into the vinyl bridge and (or) the main chain.

Polymer published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Application of 1-((2-Ethylhexyl)oxy)-4-methoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Khan, Muhammad S.’s team published research in Dalton Transactions in | CAS: 146370-51-6

Dalton Transactions published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Name: 1-((2-Ethylhexyl)oxy)-4-methoxybenzene.

Khan, Muhammad S. published the artcileSynthesis and characterization of new acetylide-functionalized aromatic and hetero-aromatic ligands and their dinuclear platinum complexes, Name: 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, the publication is Dalton Transactions (2003), 65-73, database is CAplus.

A new series of rigid rod protected and terminal dialkynes with extended π-conjugation through aromatic and hetero-aromatic linker units in the backbone, 2,5-bis(trimethylsilylethynyl)-1-(2-ethylhexyloxy)-4-methoxybenzene 1a, 2,5-bis(ethynyl)-1-(2-ethylhexyloxy)-4-methoxybenzene 1b, 5,8-bis(trimethylsilylethynyl)quinoline 2a, 5,8-bis(ethynyl)quinoline 2b, 2,3-diphenyl-5,8-bis(trimethylsilylethynyl)quinoxaline 3a, 2,3-diphenyl-5,8-bis(ethynyl)quinoxaline 3b, 4,7-bis(trimethysilylethynyl)-2,1,3-benzothiadiazole 4a and 4,7-bis(ethynyl)-2,1,3-benzothiadiazole 4b, has been synthesized. Treatment of the complex trans-[Pt(Ph)(Cl)(Et3P)2] with half equivalent of the diterminal alkynes 1b4b in iPr2NH-CH2Cl2, in the presence of CuI, at room temperature, afforded the platinum(ii) di-yne complexes trans-[(Et3P)2(Ph)Pt-CC-R-CC-Pt(Ph)(Et3P)2] [R = 1-(2-ethylhexyloxy)-4-methoxybenzene-2,5-diyl 1c, quinoline-5,8-diyl 2c, 2,3-diphenylquinoxaline-5,8-diyl 3c, 2,1,3-benzothiadiazole-4,7-diyl 4c] in good yields. The new acetylide-functionalized ligands and the platinum(ii) σ-acetylide complexes have been characterized by anal. and spectroscopic methods and x-ray single crystal structure determinations for 2c4c. The absorption spectra of the complexes 2c4c show substantial donor-acceptor interaction between the platinum(ii) centers and the conjugated ligands. The photoluminescence spectra of 1c3c show characteristic singlet (S1) and triplet (T1) emissions. Both the singlet and triplet emissions as well as the absorption decrease in energy with increasing electronegativity of the spacer groups along the series 1c4c.

Dalton Transactions published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Name: 1-((2-Ethylhexyl)oxy)-4-methoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Xia, Guoqin’s team published research in Angewandte Chemie, International Edition in 2020-05-04 | CAS: 685517-67-3

Angewandte Chemie, International Edition published new progress about Arylation. 685517-67-3 belongs to class iodides-buliding-blocks, name is 2,6-Difluoro-3-iodopyridine, and the molecular formula is C5H2F2IN, SDS of cas: 685517-67-3.

Xia, Guoqin published the artcileLigand-Enabled β-Methylene C(sp3)-H Arylation of Masked Aliphatic Alcohols, SDS of cas: 685517-67-3, the main research area is methylene arylation aliphatic alc salicylic directing group pyridone ligand; C−H activation; aliphatic alcohols; directing groups; ligands; synthetic methods.

Despite recent advances, reactivity and site-selectivity remain significant obstacles for the practical application of C(sp3)-H bond functionalization methods. Here, we describe a system that combines a salicylic-aldehyde-derived L,X-type directing group with an electron-deficient 2-pyridone ligand to enable the β-methylene C(sp3)-H arylation of aliphatic alcs., which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alc. substrates and aryl coupling partners. A site- and stereo-specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.

Angewandte Chemie, International Edition published new progress about Arylation. 685517-67-3 belongs to class iodides-buliding-blocks, name is 2,6-Difluoro-3-iodopyridine, and the molecular formula is C5H2F2IN, SDS of cas: 685517-67-3.

Referemce:
Iodide – Wikipedia,
Iodide – an overview | ScienceDirect Topics – ScienceDirect.com

Zhao, Xi Juan team published research in Journal of Food Composition and Analysis in 2022 | 530-59-6

Reference of 530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers do have nonbonding electron pairs on their oxygen atoms, 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Reference of 530-59-6.

Zhao, Xi Juan;Guo, Peng Mei;Pang, Wen Hui;Tan, Tao;Zhang, Yao Hai;Jiao, Bi Ning research published 《 Screening and quantitative analysis of characteristic secondary metabolites in Jindou kumquat (Fortunella hindsii var.chintou Swingle) among Fortunella fruits》, the research content is summarized as follows. Jindou kumquat (Fortunella hindsii var. chintou Swingle) with very small fruits belongs to genus Fortunella. However, there is a lack of relevant research on the characteristic secondary metabolites in Jindou compared with other Fortunella fruits. Here, non-targeted and targeted metabolomics based on UPLC-Q-TOF-MS and UPLC-QqQ-MS/MS was performed to profile and quantitate the phytochems. of 16 varieties including five species in the genus Fortunella. Results showed the types and contents of phytochems. in different varieties were quite distinct from each other. Twenty four of the screened metabolites in Jindou different from the other varieties were undoubtedly or tentatively identified. Targeted quant. anal. verified that coumarins and furanocoumarins could be considered to be the dominant characteristic metabolites in Jindou among other Fortunella fruits including auraptene, bergapten, imperatorin, xanthotoxin and umbelliferone. This study makes relatively comprehensive research into the secondary metabolites of Jindou and provides data as a basis for further evaluation and utilization of Fortunella germplasms.

Reference of 530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhou, Na team published research in International Journal of Biological Macromolecules in 2022 | 530-59-6

530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., Category: ethers-buliding-blocks

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Category: ethers-buliding-blocks.

Zhou, Na;Pan, Fei;Ai, Xin;Tuersuntuoheti, Tuohetisayipu;Zhao, Lei;Zhao, Liang;Wang, Yong research published 《 Preparation, characterization and antioxidant activity of sinapic acid grafted chitosan and its application with casein as a nanoscale delivery system for black rice anthocyanins》, the research content is summarized as follows. Anthocyanins (ACNs) have attracted considerable research attention because of their excellent health benefits, but their low stability and bioavailability limit their applications. In this study, sinapic acid-grafted-chitosan (SA-g-CS) conjugate was synthesized by grafting SA onto CS via a free radical mediated method. Nanoparticles were prepared using casein (CA) together with SA-g-CS to improve the performance and sustained release of black rice anthocyanins (BRA). The results of UV-Vis, FTIR and 1H NMR spectra for SA-g-CS conjugates demonstrated the successful grafting of SA onto CS. The results of DPPH, ABTS and ferric ion reducing antioxidant power assays showed that the SA-g-CS conjugates had strong antioxidant capacities, and the higher the pH of the grafting reaction system, the stronger the antioxidant capacity of the conjugates. X-ray diffraction and SEM analyses showed that the crystallog. property and microstructure of CS were improved by the grafting of SA. Compared with BRA loaded nanoparticles prepared with CA alone or the combination of CS and CA, the BRA loaded nanoparticles constructed by SA-g-CS and CA have smaller particle size, better dispersion, encapsulation efficiency and sustained-release property. These results provided great potential for the application of phenolic acid grafted CS in stabilizing ACNs.

530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem