Liu, Limin;Li, Jianying;Yan, Tao;Cai, Mingzhong published 《Novel preparation of poly(arylene ether sulfone amide)s via supported palladium-catalyzed carbonylative polymerization》. The research results were published in《Polymer Bulletin (Heidelberg, Germany)》 in 2020.Reference of 3-(4-Aminophenoxy)aniline The article conveys some information:
Two new aromatic diiodides with ether-sulfone linkages were synthesized via a 1-step procedure. Poly(arylene ether sulfone amide)s were synthesized by a supported Pd-catalyzed polycondensation of aromatic diiodides having ether-sulfone linkages, aromatic diamines, and CO. Polycondensation reactions were conducted in N,N-dimethylacetamide using a magnetic nanoparticles-bound Pd(II) complex [Fe3O4@SiO2-2P-PdCl2] as the catalyst and 1,8-diazabicycle[5,4,0]-7-undecene as the base at 120°, yielding poly(arylene ether sulfone amide)s having inherent viscosities of 0.43-0.77 dL/g. The resulting polymers were soluble in polar aprotic solvents and showed glass transition temperatures in the 204-265° range, with 10% weight losses occurring at temperatures >456° in N. Most of the polymers afforded transparent and tough films by solution-casting with tensile strengths of 71.8-82.2 MPa, Young’s moduli of 1.77-2.35 GPa, and elongations at break of 9.3-13.4%. More importantly, this supported Pd catalyst can facilely be separated from the product by simply using an external magnetic field and reused at least 7 times with almost consistent activity.3-(4-Aminophenoxy)aniline (cas: 2657-87-6) were involved in the experimental procedure.
3-(4-Aminophenoxy)aniline is one of ethers-buliding-blocks. Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. Reference of 3-(4-Aminophenoxy)anilineEthers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds.
Reference:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem