An, Shengxin’s team published research in BioResources in 17 | CAS: 91-16-7

BioResources published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Safety of 1,2-Dimethoxybenzene.

An, Shengxin published the artcileEfficient lignin depolymerization with Ru- and W-modified bi-functional solid acid catalyst, Safety of 1,2-Dimethoxybenzene, the publication is BioResources (2022), 17(1), 1062-1089, database is CAplus.

A novel Ru-modified composite catalyst, Ru-W/Sn-AlOx, was prepared, and the effects of the catalyst on lignin depolymerization were investigated in this study. The catalyst converted approx. 95% lignin into liquid product at 300°C in 12 h and 2/3 of the liquid product could be soluble in petroleum ether. The petroleum ether (PE) soluble product was mainly composed of monomers, dimers and some trimmers. This indeed indicated that the catalyst could effectively depolymerize lignin into small-mol. products. 7.22% of monomers was obtained at 310°C for 12 h. Meanwhile, the catalyst effectively reduced the char formation to 2%. After the catalytic depolymerization, the higher heating value (HHV) of the liquid product increased from 25.7 to 32.4 MJ/kg. The product could be utilized as fuel additive or converted to biofuels. This catalysis system showed great potential in the conversion of lignin into biofuels.

BioResources published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Safety of 1,2-Dimethoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Sukowski, Verena’s team published research in Angewandte Chemie, International Edition in 61 | CAS: 91-16-7

Angewandte Chemie, International Edition published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C19H21N, Application of 1,2-Dimethoxybenzene.

Sukowski, Verena published the artcileS,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis, Application of 1,2-Dimethoxybenzene, the publication is Angewandte Chemie, International Edition (2022), 61(31), e202201750, database is CAplus and MEDLINE.

Here, a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems has been developed. The unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents is demonstrated. Addnl., ortho-substituted aryl ethers are well tolerated, overcoming the “ortho constraint”, which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsym. terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their resp. catalytic activities.

Angewandte Chemie, International Edition published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C19H21N, Application of 1,2-Dimethoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Lemmens, Vincent’s team published research in ACS Applied Materials & Interfaces in 14 | CAS: 91-16-7

ACS Applied Materials & Interfaces published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Application In Synthesis of 91-16-7.

Lemmens, Vincent published the artcileRu-Bipyridine Entrapped in the Supercages of EMC-1 Faujasite as Catalyst for the Trifluoromethylation of Arenes, Application In Synthesis of 91-16-7, the publication is ACS Applied Materials & Interfaces (2022), 14(1), 971-977, database is CAplus and MEDLINE.

Trifluoromethyl (CF3) groups are versatile structural motifs especially in the field of agrochems. and pharmaceuticals. However, current trifluoromethylation reactions are generally associated with stoichiometric amounts of transition metals/metal oxidants, homogeneous catalysts, high temperatures, and expensive trifluoromethylating agents. In this work, the homogeneous photocatalyst Ru(bipy)32+ is entrapped in the pores of a faujasite support (EMC-1) via a “ship-in-a-bottle” strategy. The formation of the coordination compound was confirmed by Fourier transform IR (FTIR), UV-Vis spectroscopy, and X-ray absorption spectroscopy (XAS). Due to its high stability toward acidified environments, this single-site heterogeneous catalyst is suitable for the trifluoromethylation of synthetically interesting (hetero)arenes under visible-light irradiation at room temperature Furthermore, the heterogeneous catalyst could efficiently be reused for at least three times with minimal catalyst leaching/deactivation.

ACS Applied Materials & Interfaces published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Application In Synthesis of 91-16-7.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Bole, Leonie J.’s team published research in Angewandte Chemie, International Edition in 61 | CAS: 91-16-7

Angewandte Chemie, International Edition published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, HPLC of Formula: 91-16-7.

Bole, Leonie J. published the artcileEnhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications, HPLC of Formula: 91-16-7, the publication is Angewandte Chemie, International Edition (2022), 61(26), e202204262, database is CAplus and MEDLINE.

Though LiTMP (TMP = 2,2,6,6-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilized. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N’,N”,N”-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr-Na bond, but also by driving the metalation reaction towards quant. formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.

Angewandte Chemie, International Edition published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, HPLC of Formula: 91-16-7.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Hullar, Ted’s team published research in Atmospheric Chemistry and Physics in 22 | CAS: 91-16-7

Atmospheric Chemistry and Physics published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Recommanded Product: 1,2-Dimethoxybenzene.

Hullar, Ted published the artcileEnhanced photodegradation of dimethoxybenzene isomers in/on ice compared to in aqueous solution, Recommanded Product: 1,2-Dimethoxybenzene, the publication is Atmospheric Chemistry and Physics (2022), 22(9), 5943-5959, database is CAplus.

Photochem. reactions of contaminants in snow and ice can be important sinks for organic and inorganic compounds deposited onto snow from the atm. and sources for photoproducts released from snowpacks into the atm. Snow contaminants can be found in the bulk ice matrix, in internal liquid-like regions (LLRs), or in quasi-liquid layers (QLLs) at the air-ice interface, where they can readily exchange with the firn air. Some studies have reported that direct photochem. reactions occur faster in LLRs and QLLs than in aqueous solution, while others have found similar rates. Here, we measure the photodegradation rate constants for loss of the three dimethoxybenzene isomers under varying exptl. conditions, including in aqueous solution, in LLRs, and at the air-ice interface of nature-identical snow. Relative to aqueous solution, we find modest photodegradation enhancements (3- and 6-fold) in LLRs for two of the isomers and larger enhancements (15- to 30-fold) at the air-ice interface for all three isomers. We use computational modeling to assess the impact of light absorbance changes on photodegradation rate enhancements at the interface. We find small (2-5 nm) bathochromic (red) absorbance shifts at the interface relative to in solution, which increases light absorption, but this factor only accounts for less than 50% of the measured rate constant enhancements. The major factor responsible for photodegradation rate enhancements at the air-ice interface appears to be more efficient photodecay: estimated dimethoxybenzene quantum yields are 6- to 24-fold larger at the interface compared to in aqueous solution and account for the majority (51%-96%) of the observed enhancements. Using a hypothetical model compound with an assumed Gaussian-shaped absorbance peak, we find that a shift in the peak to higher or lower wavelengths can have a minor to substantial impact on photodecay rate constants, depending on the original location of the peak and the magnitude of the shift. Changes in other peak properties at the air-ice interface, such as peak width and height (i.e., molar absorption coefficient), can also impact rates of light absorption and direct photodecay. Our results suggest our current understanding of photodegradation processes underestimates the rate at which some compounds are broken down, as well as the release of photoproducts into the atm.

Atmospheric Chemistry and Physics published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Recommanded Product: 1,2-Dimethoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Cain, Caitlin N.’s team published research in Analytical Chemistry (Washington, DC, United States) in 94 | CAS: 91-16-7

Analytical Chemistry (Washington, DC, United States) published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Computed Properties of 91-16-7.

Cain, Caitlin N. published the artcileTile-Based Pairwise Analysis of GC x GC-TOFMS Data to Facilitate Analyte Discovery and Mass Spectrum Purification, Computed Properties of 91-16-7, the publication is Analytical Chemistry (Washington, DC, United States) (2022), 94(14), 5658-5666, database is CAplus and MEDLINE.

A new tile-based pairwise anal. workflow, termed 1v1 anal., is presented to discover and identify analytes that differentiate two chromatograms collected using comprehensive two-dimensional (2D) gas chromatog. coupled with time-of-flight mass spectrometry (GC x GC-TOFMS). Tile-based 1v1 anal. easily discovered all 18 non-native analytes spiked in diesel fuel within the top 30 hits, outperforming standard pairwise chromatog. analyses. However, eight spiked analytes could not be identified with multivariate curve resolution-alternating least-squares (MCR-ALS) nor parallel factor anal. (PARAFAC) due to background contamination. Analyte identification was achieved with class comparison enabled-mass spectrum purification (CCE-MSP), which obtains a pure analyte spectrum by normalizing the spectra to an interferent mass channel (m/z) identified from 1v1 anal. and subtracting the two spectra. This report also details the development of CCE-MSP assisted MCR-ALS, which removes the identified interferent m/z from the data prior to decomposition In total, 17 out of 18 spiked analytes had a match value (MV) > 800 with both versions of CCE-MSP. For example, MCR-ALS and PARAFAC were unable to decompose the pure spectrum of Me decanoate (MVs < 200) due to its low 2D chromatog. resolution (~0.34) and high interferent-to-analyte signal ratio (~30:1). By leveraging information gained from 1v1 anal., CCE-MSP and CCE-MSP assisted MCR-ALS obtained a pure spectrum with an average MV of 908 and 964, resp. Furthermore, tile-based 1v1 anal. was applied to track moisture damage in cacao beans, where 86 analytes with at least a 2-fold concentration change were discovered between the unmolded and molded samples. This 1v1 anal. workflow is beneficial for studies where multiple replicates are either unavailable or undesirable to save anal. time.

Analytical Chemistry (Washington, DC, United States) published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Computed Properties of 91-16-7.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Khan, Jabir’s team published research in Journal of Organic Chemistry in 86 | CAS: 91-16-7

Journal of Organic Chemistry published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Name: 1,2-Dimethoxybenzene.

Khan, Jabir published the artcileLambert Salt-Initiated Development of Friedel-Crafts Reaction on Isatin to Access Distinct Derivatives of Oxindoles, Name: 1,2-Dimethoxybenzene, the publication is Journal of Organic Chemistry (2021), 86(24), 17833-17847, database is CAplus and MEDLINE.

Herein, a mild metal-free and efficacious route for the synthesis of biol. important 3-aryl oxindole derivatives I [R = H, OH, 4-MeOC6H4, etc.; R1 = H, Me, Br, etc.; R2 = H, NO2, Cl; R3 = H, Me, Bn, Ts; Ar = 4-HOC6H4, 2,4,6-tri-MeOC6H2, 1H-indol-3-yl, etc.] was described. Using Lambert salt-initiated hydroarylation of isatin, a diverse array of monoarylated products, sym./unsym. double-arylated products and deoxygenated hydroarylated products could be synthesized from the single starting substrate in good to excellent yields. A preliminary mechanistic study revealed that the reaction proceeded via a monoarylated product followed by a nucleophilic attack by another electron-rich arene nucleophile under mild conditions. The potential of newly synthesized sym./unsym. 3,3-disubstituted oxindole, 3-substituted 3-hydroxy oxindoles, 3,3-di(indolyl)indolin-2-ones, and α-aryl oxindoles as valuable building blocks was further illustrated.

Journal of Organic Chemistry published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Name: 1,2-Dimethoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Liu, Yulin’s team published research in European Journal of Medicinal Chemistry in 235 | CAS: 91-16-7

European Journal of Medicinal Chemistry published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Category: ethers-buliding-blocks.

Liu, Yulin published the artcileNovel inhibitors of AChE and Aβ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer’s disease, Category: ethers-buliding-blocks, the publication is European Journal of Medicinal Chemistry (2022), 114305, database is CAplus and MEDLINE.

A series of sulfone analogs of donepezil I (R1 = H, F; R2 = H, 4-F, 3-Cl, etc.) were designed and synthesized as novel acetylcholinesterase (AChE) inhibitors with the potent inhibiting Aβ aggregation and providing neuroprotective effects as potential modalities for Alzheimer’s disease (AD). Most of the target compounds displayed effective inhibition of AChE, especially compound II which displayed powerful inhibitory activity (IC50 = 2.4 nM). Kinetic and docking studies indicated that compound II was a mixed-type inhibitor. Furthermore, in glyceraldehyde (GA)-exposed SH-SY5Y differentiated neuronal cells, compound II could potently inhibit AChE, reduce tau phosphorylation at S396 residue, provide neuroprotection by rescuing neuronal morphol. and increasing cell viability. It was also found to reduce amyloid aggregation in the presence of AChE. In addition, compound II showed evident protections from mitochondrial membrane dysfunction and oxidative stress in okadaic acid-induced pharmacol. models. Moreover, compound II exhibited more effective treatment prospects in vivo than donepezil, including a moderate blood-brain barrier permeability, a more potent AChE inhibitory activity and behavioral improvement in scopolamine-induced cognition-impaired mice model at a much lower dose. Collectively, compound II is a promising lead compound for further investigation to discovery and development of new anti-AD agents.

European Journal of Medicinal Chemistry published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Category: ethers-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Sun, Yue’s team published research in Environmental Science & Technology in 55 | CAS: 91-16-7

Environmental Science & Technology published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C11H10O, Related Products of ethers-buliding-blocks.

Sun, Yue published the artcilePolycyclic Aromatic Carbon: A Key Fraction Determining the Light Absorption Properties of Methanol-Soluble Brown Carbon of Open Biomass Burning Aerosols, Related Products of ethers-buliding-blocks, the publication is Environmental Science & Technology (2021), 55(23), 15724-15733, database is CAplus and MEDLINE.

The composition and radiative forcing of light-absorbing brown carbon (BrC) aerosol remain poorly understood. Polycyclic aromatics (PAs) are BrC chromophores with fused benzene rings. Understanding the occurrence and significance of PAs in BrC is challenging due to a lack of standards for many PAs. In this study, we quantified polycyclic aromatic carbon(PAC), defined as the carbon of fused benzene rings, based on mol. markers (benzene polycarboxylic acids, BPCAs). Open biomass burning aerosols (OBBAs) of 22 rainforest plants were successively extracted with water and methanol for the anal. of water- and methanol-soluble PAC (WPAC and MPAC, resp.). PAC is an important fraction of water- and methanol-soluble organic carbon (WSOC and MSOC, resp.). WPAC/WSOC ranged from 0.03 to 0.18, and MPAC/MSOC was even higher (range: 0.16-0.80). The priority polycyclic aromatic hydrocarbons contributed less than 1% of MPAC. The mass absorption efficiency (MAE) of MSOC showed a strong linear correlation with MPAC/MSOC (r = 0.60-0.95, p < 0.01). The absorption Ångström exponent (AAE) of methanol-soluble BrC showed a strong linear correlation with the degree of aromatic condensation of MPAC, which was described by the average number of carboxylic groups of BPCA (r = -0.79, p < 0.01). This result suggested that PAC was a key fraction determining the light absorption properties (i.e., light absorptivity and wavelength dependence) of methanol-soluble BrC in OBBAs.

Environmental Science & Technology published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C11H10O, Related Products of ethers-buliding-blocks.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem

Yan, Penghui’s team published research in Catalysis Science & Technology in 12 | CAS: 91-16-7

Catalysis Science & Technology published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C5H10Cl3O3P, Application of 1,2-Dimethoxybenzene.

Yan, Penghui published the artcileThe role of Ni sites located in mesopores in the selectivity of anisole hydrodeoxygenation, Application of 1,2-Dimethoxybenzene, the publication is Catalysis Science & Technology (2022), 12(7), 2184-2196, database is CAplus.

A highly dispersed Ni catalyst with an increased number of Ni sites selectively distributed in the mesopores of HBEA has been developed and applied in anisole hydrodeoxygenation (HDO) in a continuous-flow reactor under a high WHSV (2.8 min-1). The developed catalyst (Ni/BEA-OR-PH) displayed a significantly higher cyclohexane formation rate compared to the catalysts prepared by incipient wetness impregnation (Ni/BEA-IWI) and deposition-precipitation (Ni/BEA-DP) methods, which was attributed to its higher number of accessible active metal sites in mesopores. While the Ni/BEA-DP as well as Ni/BEA-OR-PH exhibited a high dispersion, a higher concentration of Ni species was located in micropores and distributed as charge-compensating cations, leading to a low concentration of high-temperature desorbed H per surface Ni, which facilitates the hydrogenolysis activity but restricts the hydrogenation of aromatics Therefore, a high yield of BTX (benzene, toluene and xylene isomers) products was detected over Ni/BEA-DP.

Catalysis Science & Technology published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C5H10Cl3O3P, Application of 1,2-Dimethoxybenzene.

Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem