Khan, Sadiq Noor team published research in European Journal of Pharmaceutical Sciences in 2022 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Application of C18H17NO5

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Application of C18H17NO5.

Khan, Sadiq Noor;Shaheen, Farzana;Aleem, Umair;Sheikh, Sumbla;Tamfu, Alfred Ngenge;Ashraf, Sajda;Ul-Haq, Zaheer;Ullah, Saeed;Wahab, Atia-tul-;Choudhary, M. Iqbal;Jahan, Humera research published 《 Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation》, the research content is summarized as follows. 18β-Glycyrrhetinic acid (18β-GA) is known for several biol. activities, and has been the focus of extensive research for the development of therapeutic agents. In the current study, 18β-GA-peptide conjugates 2-11 were evaluated for their in vitro α-glucosidase inhibitory and antiglycation activities. Structure-activity relationship (SAR) established and mol. interactions of active bioconjugates with the enzyme′s binding sites were predicted through mol. modeling approach. In tripeptide moiety of conjugates 2-11, peptide residue at position 1 was found to have a significant role on α-glucosidase inhibition. The most active 18β-GA-peptide conjugates 5 (18β-GA-Cys1-Tyr2-Gly3), and 8 (18β-GA-Pro1-Tyr2-Gly3) exhibited several-fold potent α-glucosidase inhibition (IC50 values 20-28 ΜM), as compared to standard drug acarbose (IC50 = 875.8 ± 2.10 ΜM). Kinetic studies of potent compounds, 4-8 revealed that conjugate 5 exhibits competitive-type of inhibition, while conjugates 6-8 showed a non-competitive type of inhibition. The simulation studies also supported the kinetic results that conjugate 5 (18β-GA-Cys1-Tyr2-Gly3) inhibits the α-glucosidase enzyme by blocking its substrate binding site. AGEs-induced NO• inhibitors play an important role in controlling the inflammation associated with diabetes mellitus. The peptide conjugates 2-11 were also evaluated in vitro for AGEs-induced NO• inhibition using RAW 264.7 macrophage cell line. Our data revealed that conjugates 7-10 were the more potent AGEs-induced NO• inhibitors, comparable to standards rutin, and PDTC. The peptide conjugate 5 (a competitive inhibitor of α-glucosidase) also exhibited a strong inhibitory activity against AGEs-induced NO• production Furthermore, peptide conjugates 2-11 were found non-cytotoxic to mouse fibroblast NIH-3T3, and murine macrophages RAW 264.7 cell lines. In conclusion, our data demonstrates that besides possessing strong α-glucosidase inhibition, the newly synthesized peptide conjugates also alleviated the AGEs-induced NO• production in RAW macrophages. Dual inhibition of α-glucosidase enzyme, and AGEs-induced NO• production by 18β-GA-peptide conjugates qualify them for further research in anti-diabetic drug discovery.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Application of C18H17NO5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kamo, Naoki team published research on Tetrahedron Letters in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Formula: C18H17NO5

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Formula: C18H17NO5.

Kamo, Naoki;Hayashi, Gosuke;Okamoto, Akimitsu research published 《 Silyl-protected propargyl glycine for multiple labeling of peptides by chemoselective silyl-deprotection》, the research content is summarized as follows. We synthesized Fmoc-propargyl glycine derivatives (Fmoc = 9-fluorenylmethoxycarbonyl) bearing different silyl protecting groups that can be readily introduced by using a standard solid-phase peptide coupling procedures. Taking advantage of the orthogonality between the different silyl protecting groups, chemoselective incorporation of functional mols. into a 19-mer peptide through Click reactions was demonstrated.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Formula: C18H17NO5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kang, Hee Kyoung team published research on ACS Infectious Diseases in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Formula: C18H17NO5

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Formula: C18H17NO5.

Kang, Hee Kyoung;Park, Jonggwan;Seo, Chang Ho;Park, Yoonkyung research published 《 PEP27-2, a Potent Antimicrobial Cell-Penetrating Peptide, Reduces Skin Abscess Formation during Staphylococcus aureus Infections in Mouse When Used in Combination with Antibiotics》, the research content is summarized as follows. PEP27, a 27-amino acid (aa) peptide secreted by Streptococcus pneumoniae, is an autolytic peptide that functions as a major virulence factor. To develop a clin. applicable antimicrobial peptide (AMP), we designed PEP27 analogs with Trp substitutions to enhance its antimicrobial activity compared to that of PEP27. Particularly, PEP27-2 showed strong antimicrobial activity against a wide variety of bacteria, including multidrug-resistant (MDR) bacteria. It was found that the antimicrobial activity of PEP27-2 was increased by substituting Trp for the aa at the middle position of PEP27. We found that PEP27-2 acts as an effective cell-penetrating peptide in bacterial and mammalian cells. Here, we proved that s.c. infection with MDR Staphylococcus aureus induced skin lesions such as skeletal muscle damage, deep inflammation, and necrosis of the overlaying dermis in mice. Combination treatment with antibiotics revealed synergistic effects, remarkably reducing abscess size and improving the bacteria removal rate from the infection site. Moreover, PEP27-2-antibiotic combination treatment reduced inflammation, lowering levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible NO synthase (iNOS), and cyclooxygenase (COX-2) in skin abscess tissue. The results suggest that the PEP27-2 peptide is a promising therapeutic option for combating MDR bacterial strains by enhancing antibiotic penetration and protecting against MDR bacteria.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Formula: C18H17NO5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Huhmann, Susanne team published research on ChemBioChem in 2021 | 73724-45-5

SDS of cas: 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. SDS of cas: 73724-45-5.

Huhmann, Susanne;Nyakatura, Elisabeth K.;Rohrhofer, Anette;Moschner, Johann;Schmidt, Barbara;Eichler, Jutta;Roth, Christian;Koksch, Beate research published 《 Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection》, the research content is summarized as follows. With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogs. We characterized the influence of the fluorinated analogs on the biophys. properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.

SDS of cas: 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Jacobsson, Erik team published research on Journal of Natural Products in 2021 | 73724-45-5

Synthetic Route of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Synthetic Route of 73724-45-5.

Jacobsson, Erik;Peigneur, Steve;Andersson, Haakan S.;Laborde, Quentin;Strand, Malin;Tytgat, Jan;Goeransson, Ulf research published 《 Functional Characterization of the Nemertide α Family of Peptide Toxins》, the research content is summarized as follows. Peptide toxins find use in medicine, biotechnol., and agriculture. They are exploited as pharmaceutical tools, particularly for the investigation of ion channels. Here, we report the synthesis and activity of a novel family of peptide toxins: the cystine-knotted α nemertides. Following the prototypic α-1 and -2 (1 and 2), six more nemertides were discovered by mining of available nemertean transcriptomes. Here, we describe their synthesis using solid phase peptide chem. and their oxidative folding by using an improved protocol. Nemertides α-2 to α-7 (2-7) were produced to characterize their effect on voltage-gated sodium channels (Blatella germanica BgNaV1 and mammalian NaVs1.1-1.8). In addition, ion channel activities were matched to in vivo tests using an Artemia microwell assay. Although nemertides demonstrate high sequence similarity, they display variability in activity on the tested NaVs. The nemertides are all highly toxic to Artemia, with EC50 values in the sub-low micromolar range, and all manifest preference for the insect BgNaV1 channel. Structure-activity relationship anal. revealed key residues for NaV-subtype selectivity. Combined with low EC50 values (e.g., NaV1.1: 7.9 nM (α-6); NaV1.3: 9.4 nM (α-5); NaV1.4: 14.6 nM (α-4)) this underscores the potential utility of α-nemertides for rational optimization to improve selectivity.

Synthetic Route of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Joshi, Vinay G. team published research on Applied Microbiology and Biotechnology in 2021 | 73724-45-5

Related Products of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. Related Products of 73724-45-5.

Joshi, Vinay G.;Chindera, Kantaraja;Bais, Manish V.;Sajjanar, Basavaraj;Tiwari, Ashok K.;Kumar, Satish research published 《 Novel peptide (RATH) mediated delivery of peptide nucleic acids for antiviral interventions》, the research content is summarized as follows. The peptide nucleic acid (PNA) is a chimeric mol. with the nucleobases connected by peptide bonds. This chimeric nature gives the PNA certain therapeutic advantages over natural antisense nucleic acid mols. The PNA probes are known for its better and stronger complementation with target nucleic acids. However, cellular delivery of PNA is a major hurdle due to the charge-neutral nature of the PNA. For cellular delivery of PNA, peptide-PNA conjugates are used. This approach may face some practical limitation in terms of PNA antisense activity. In this study, we propose a novel RATH-2 peptide-based non-covalent PNA delivery mechanism. We observed RATH-2 shows a favorable mol. interaction with PNA at 16:1 (peptide:PNA) molar ratio resulting in co-centric nanoparticle formation. With this combination, we could achieve as high as 93% cellular delivery of the PNA. The proposed non-covalent RATH:PNA delivery model showed endocytic entrapment free delivery of PNA. The study further demonstrated the therapeutic application of PNA with in vitro antiviral intervention model. Using RATH-2 non-covalent PNA delivery system, we could inhibit 69.5% viral load. The present study demonstrates a cell-penetrating peptide:PNA interaction can lead to nanoparticle formations that facilitated cellular delivery of PNA.

Related Products of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Hostetler, Matthew A. team published research on ACS Chemical Biology in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Name: Fmoc-Ser-OH

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Name: Fmoc-Ser-OH.

Hostetler, Matthew A.;Smith, Chloe;Nelson, Samantha;Budimir, Zachary;Modi, Ramya;Woolsey, Ian;Frerk, Autumn;Baker, Braden;Gantt, Jessica;Parkinson, Elizabeth I. research published 《 Synthetic natural product inspired cyclic peptides》, the research content is summarized as follows. Natural products are a bountiful source of bioactive mols. Unfortunately, discovery of novel bioactive natural products is challenging due to cryptic biosynthetic gene clusters, low titers, and arduous purifications. Herein, we describe SNaPP (Synthetic Natural Product Inspired Cyclic Peptides), a method for identifying NP-inspired bioactive peptides. SNaPP expedites bioactive mol. discovery by combining bioinformatics predictions of nonribosomal peptide synthetases with chem. synthesis of the predicted natural products (pNPs). SNaPP utilizes a recently discovered cyclase, the penicillin binding protein-like cyclase, as the lynchpin for the development of a library of head-to-tail cyclic peptide pNPs. Anal. of 500 biosynthetic gene clusters allowed for identification of 131 novel pNPs. Fifty-one diverse pNPs were synthesized using solid phase peptide synthesis and solution-phase cyclization. Antibacterial testing revealed 14 pNPs with antibiotic activity, including activity against multidrug-resistant Gram-neg. bacteria. Overall, SNaPP demonstrates the power of combining bioinformatics predictions with chem. synthesis to accelerate the discovery of bioactive mols.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Name: Fmoc-Ser-OH

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Fan, Jinda team published research on Current Analytical Chemistry in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Category: ethers-buliding-blocks

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. Category: ethers-buliding-blocks.

Fan, Jinda;Cheney, Philip P.;Bloch, Sharon;Xu, Baogang;Liang, Kexian;Odonkor, Charles A.;Edwards, Wilson B.;Basak, Soubir;Mintz, Rachel;Biswas, Pratim;Achilefu, Samuel research published 《 Multifunctional Thio-Stabilized Gold Nanoparticles for Near-Infrared Fluorescence Detection and Imaging of Activated Caspase-3》, the research content is summarized as follows. Gold nanoparticles (AuNPs) are commonly used in nanomedicine because of their unique spectral properties, chem. and biol. stability, and ability to quench the fluorescence of organic dyes attached to their surfaces. However, the utility of spherical AuNPs for activatable fluorescence sensing of mol. processes have been confined to resonance-matched fluorophores in the 500 nm to 600 nm spectral range to maximize dye fluorescence quenching efficiency. Expanding the repertoire of fluorophore systems into the NIR fluorescence regimen with emission >800 nm will facilitate the anal. of multiple biol. events with high detection sensitivity. The primary goal of this study is to determine if spherical AuNP-induced radiative rate suppression of non-resonant near-IR (NIR) fluorescent probes can serve as a versatile nanoconstruct for highly sensitive detection and imaging of activated caspase-3 in aqueous media and cancer cells. This required the development of activatable NIR fluorescence sensors of caspase-3 designed to overcome the nonspecific degradation and release of the surface coatings in aqueous media. We harnessed the fluorescence-quenching properties and multivalency of spherical AuNPs to develop AuNP-templated activatable NIR fluorescent probes to detect activated caspase-3, an intracellular reporter of early cell death. Freshly AuNPs were coated with a multifunctional NIR fluorescent dye-labeled peptide (LS422) consisting of an RGD peptide sequence that targets αvβ3 -integrin protein (αvβ3)on the surface of cancer cells to mediate the uptake and internalization of the sensors in tumor cells; a DEVD peptide sequence for reporting the induction of cell death through caspase-3 mediated NIR fluorescence enhancement; and a multidentate hexacysteine sequence for enhancing self-assembly and stabilizing the multifunctional construct on AuNPs. The integrin-binding affinity of LS422 and caspase-3 kinetics were determined by competitive radioligand binding and fluorogenic peptide assays, resp. Detection of intracellular caspase-3, cell viability, and the internalization of LS422 in cancer cells was determined by confocal NIR fluorescence spectroscopy and microscopy. Narrow size AuNPs (13 nm) were prepared and characterized by transmission electron microscopy and dynamic light scattering. When assembled on the AuNPs, the binding constant of LS422 forαvβ3 improved 11- fold from 13.2 nM to 1.2 nM. Whereas the catalytic turnover of caspase-3 by LS422-AuNPs was similar to the reference fluorogenic peptide, the binding affinity for the enzyme increased by a factor of 2. Unlike the αvβ3 pos., but caspase-3 neg. breast cancer MCF-7 cells, treatment of the αvβ3 and caspase-3 pos. lung cancer A549 cells with Paclitaxel showed significant fluorescence enhancement within 30 min, which correlated with caspase-3 specific activation of LS422-AuNPs fluorescence. The incorporation of a 3.5 mW NIR laser source into our spectrofluorometer increased the detection sensitivity by an order of magnitude (limit of detection ∼0.1 nM of cypate) and significantly decreased the signal noise relative to a xenon lamp. This gain in sensitivity enabled the detection of substrate hydrolysis at a broad range of inhibitor concentrations without photobleaching the cypate dye. The multifunctional AuNPs demonstrate the use of a non-resonant quenching strategy to design activatable NIR fluorescence mol. probes. The nanoconstruct offers a selective reporting method for detecting activated caspase-3, imaging of cell viability, identifying dying cells, and visualizing the functional status of intracellular enzymes. Performing these tasks with NIR fluorescent probes creates an opportunity to translate the in vitro and cellular anal. of enzymes into in vivo interrogation of their functional status using deep tissue penetrating NIR fluorescence anal. methods.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ferrer-Gago, Fernando J. team published research on Peptide Science (Hoboken, NJ, United States) in 2021 | 73724-45-5

Name: Fmoc-Ser-OH, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Name: Fmoc-Ser-OH.

Ferrer-Gago, Fernando J.;Koh, Li Quan research published 《 Synthesis of C-terminal glycine-rich o-aminoanilide peptides without overacylation for use in benzotriazole-mediated native chemical ligation》, the research content is summarized as follows. Native chem. ligation (NCL) requires the constant development of methods that facilitate the efficient synthesis of C-terminal peptide thioesters, which are key intermediates in NCL. After testing several resins and linkers, we have developed a solid support on the Rink and chlorotrityl chloride resins based on the attachment of o-phenylenediamine (PheDA), with and without an electron withdrawing group. These linkers enable the synthesis of C-terminus o-aminoanilide peptides without overacylation when the glycine is the first amino acid in the synthesis or when we have a glycine-rich sequence. Upon treatment with NaNO2, the glycine o-aminoanilide peptides produce C-terminus benzotriazole (Bt) peptides. The C-terminus-Bt peptides undergo thiol exchange, yielding thioester peptides, which can then be used in an NCL reaction. The linkers attached to the Rink and CT resins efficiently avoid overacylation in the synthesis of glycine-rich sequences, increasing the yield and purity of these sequences.

Name: Fmoc-Ser-OH, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Fleming, Matthew C. team published research on Journal of Medicinal Chemistry in 2022 | 73724-45-5

Recommanded Product: Fmoc-Ser-OH, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Recommanded Product: Fmoc-Ser-OH.

Fleming, Matthew C.;Chiou, Lilly F.;Tumbale, Percy P.;Droby, Gaith N.;Lim, Jiwoong;Norris-Drouin, Jacqueline L.;Williams, Jason G.;Pearce, Kenneth H.;Williams, R. Scott;Vaziri, Cyrus;Bowers, Albert A. research published 《 Discovery and Structural Basis of the Selectivity of Potent Cyclic Peptide Inhibitors of MAGE-A4》, the research content is summarized as follows. MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homol. domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochem. tools and structural insights for the future development of MAGE-A4-targeted cellular probes.

Recommanded Product: Fmoc-Ser-OH, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem