Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector was written by Xia, Yongjun;Chen, Yan;Liu, Xiaofeng;Zhou, Xuan;Wang, Zhaochu;Wang, Guangqiang;Xiong, Zhiqiang;Ai, Lianzhong. And the article was included in Journal of the Science of Food and Agriculture in 2019.Product Details of 605-94-7 This article mentions the following:
BACKGROUND : Antroquinonol, a ubiquinone derivative that shows anticancer and anti-inflammatory activities, is produced during solid-state fermentation of Antrodia camphorata; however, it cannot be biosynthesized via conventional submerged fermentation RESULTS : A method for enhancing the biosynthesis of antroquinonol by controlling pH and adding an oxygen vector in a 7 L bioreactor was studied. In shake-flask experiments, a maximum antroquinonol production of 31.39 ± 0.78 mg L-1 was obtained by fermentation with adding 0.2 g L-1 coenzyme Q0 (CoQ0), at the 96th hour. Following kinetic anal. of the fermentation process, pH control strategies were investigated. A maximum antroquinonol production of 86.47 ± 3.65 mg L-1 was achieved when the pH was maintained at 5.0, which exhibited an increase of 348.03% higher than the batch without pH regulation (19.30 ± 0.88 mg L-1). The conversion rate of CoQ0 improved from 1.51% to 20.20%. Further research revealed that the addition of n-tetradecane could increase the production of antroquinonol to 115.62 ± 4.87 mg L-1 by increasing the dissolved oxygen in the fermentation broth. CONCLUSION : The results demonstrated that pH played an important role in antroquinonol synthesis in the presence of the effective precursor CoQ0. It was a very effective strategy to increase the yield of antroquinonol by controlling pH and adding oxygen vector. © 2018 Society of Chem. Industry. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Product Details of 605-94-7).
2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Product Details of 605-94-7
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem