3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Electric Literature of C11H16O3
Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study was written by Li, Helong;Song, Guoyong. And the article was included in ACS Catalysis in 2019.Electric Literature of C11H16O3 This article mentions the following:
Substantial attention has been given to depolymerization of lignin into monomeric phenols in recent years because lignin is a renewable and CO2-natural aromatic resource. Recent results indicated that the base can shift the selectivity from C3-fragmented phenols to C2-fragmented phenols partially in transition metal-catalyzed lignin hydogenolysis, while reaction mechanisms have remained elusive. Using a series of dimeric, trimeric, and polymeric β-O-4 lignin mimics, as well as their deuterated analogs, we now report an in-depth exptl. study on the mechanism of Ru/C-catalyzed hydogenolysis lignin. Exptl. evidence based on substrate probes, reactivity examination of possible intermediates, and isotopic labeling experiments confirmed that the reported pathways, such as enol ether generated via α,β-dehydration reaction or Cα carbonyl compounds generated via dehydrogenation or consecutive Cβ-O and Cγ-OH bonds hydrogenolysis, are irrelevant to current reactions. For C3-fragmented phenols with Ru/C catalyst under neutral condition, we deduced that the monolignol such as coniferyl alc. is formed primarily through a concerted hydrogenolysis process, where Cα-O and Cβ-O bonds are ruptured synchronously. For C2-fragmented phenols generated by the combination of Ru/C and Cs2CO3, the reaction should start from quinone methide specie generated from the dehydration (or demethanolization) reaction between phenolic proton and Cα-OH (or Cα-OMe). The followed deprotonation of Cγ-OH and the coordination of oxygen with Ru results in a Ru specie, which undergoes Cβ-H, Cβ-O, and Cβ-Cγ bonds cleavage to release 4-vinylphenol. In the case of Ru/C-catalyzed hydrogenolysis of an enzymic mild acidolysis lignin (EMAL) derived from birch tree, the effects of some key parameters such as temperature, reaction time, as well as the type and dosage of base were also examined in terms of monomer yields and selectivity. We found the formation of C2-phenols is a base-dependent process, which is in line with the proposed mechanism. Under optimized conditions, a high proportion of C2-phenols (44%) could be obtained with 26.6 weight % total monomers yield. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Electric Literature of C11H16O3).
3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Electric Literature of C11H16O3
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem