14-Sep-2021 News Brief introduction of 17061-62-0

The synthetic route of Bis(4-methoxybenzyl)amine has been constantly updated, and we look forward to future research findings.

Application of 17061-62-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 17061-62-0, name is Bis(4-methoxybenzyl)amine belongs to ethers-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below.

To a solution of bis(4-methoxybenzyl)amine 30.1 (900 g, 3.49 mol, 1 eq) in DCM (9 L) was added TEA (634 mL, 4.55 mol, 1.3 eq) followed by dropwise addition of ethanesulfonyl chloride (399 mL, 4.19 mol, 1.2 eq). (The internal temperature was kept between 5-10 C during the addition of the ethanesulfonyl chloride). Once the addition was complete, the cooling bath was removed. After 1.5 h, TLC showed complete loss of starting material. The reaction was quenched by the addition of water (4 L) to the reaction mixture. The layers were separated and the aqueous layer extracted with DCM (2x 2 L). The combined organic layers were washed with brine (2x 1 L), dried over Na2SO4, and concentrated in vacuo. The material thus obtained was adsorbed onto a plug of silica gel and purified by chromatography (silica gel (60-120 mesh) eluting with a gradient of 10-80% EtOAc in hexanes) to provide the title compound 30.0 (1125 g, 3.22 mol, 92%) as white solid. 1H- NMR (400 MHz, CDC13) oe 7.23 (dd,J= 2.08, 6.62 Hz, 4H), 6.90 (dd,J= 2.12, 6.60 Hz, 4H), 4.29 (s, 4H), 3.83 (app s, 6H), 2.92 (q,J= 7.40 Hz, 2H), 1.33 (t,J= 7.40 Hz, 3H). GC-MS (ESI pos. ion) m/z: = 372.2 (M+Na).

The synthetic route of Bis(4-methoxybenzyl)amine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; KOPECKY, David J.; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; RAMSDEN, Philip Dean; (434 pag.)WO2018/93577; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

9/9/2021 News The important role of 17061-62-0

The synthetic route of 17061-62-0 has been constantly updated, and we look forward to future research findings.

17061-62-0, name is Bis(4-methoxybenzyl)amine, belongs to ethers-buliding-blocks compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. SDS of cas: 17061-62-0

To a stirred solution of 100.1 (100 g, 0.39 mol) in DCM (1 L) was added TEA (71 mL, 0.51 mol), followed by dropwise addition of methanesulfonyl chloride (36 mL, 0.47 mol). The internal temperature was kept between 5-10 C during the addition of methane sulfonyl chloride. Once the addition was complete, the cooling bath was removed and the mixture was stirred at RT until TLC analysis indicated that the reaction was complete. Thereafter, water (1 L) was added, the layers were separated and the aqueous layer was extracted with DCM (2 x 500 mL). The combined organic layers were washed with brine (2 x 1 L), dried over Na2SO4, and concentrated in vacuo. The residue was purified on a silica gel column, employing a gradient of 10-80% EtOAc in hexanes, to afford 120 g (0.36 mol, 92%) of 101.0 as white solid.1H-NMR (400 MHz, CDCl3) delta 7.26 (dd, J=2.12, 6.60 Hz, 4H) 6.91 (dd, J=2.12, 6.62 Hz, 4H) 4.28 (s, 4H) 3.83 (s, 6H) 2.75 (s, 3H).

The synthetic route of 17061-62-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Yinhong; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; KREIMAN, Charles; (308 pag.)WO2018/93579; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

New downstream synthetic route of Bis(4-methoxybenzyl)amine

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Related Products of 17061-62-0, A common heterocyclic compound, 17061-62-0, name is Bis(4-methoxybenzyl)amine, molecular formula is C16H19NO2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of bis(4-methoxybenzyl)amine 30.1 (900 g, 3.49 mol, 1 eq) in DCM (9 L) was added TEA (634 mL, 4.55 mol, 1.3 eq), followed by dropwise addition of ethanesulfonyl chloride (399 mL, 4.19 mol, 1.2 eq). (The internal temperature was kept between 5-10 C during the addition of the ethane sulfonyl chloride). Once the addition was complete, the cooling bath was removed. After 1.5 h, TLC showed complete loss of starting material. The reaction was quenched by the addition of water (4 L) to the reaction mixture. The layers were separated and the aqueous layer was extracted with DCM (2x 2 L). The combined organic layers were washed with brine (2x 1 L), dried over Na2SO4, and concentrated in vacuo. The material thus obtained was adsorbed onto a plug of silica gel and purified by chromatography (silica gel (60-120 mesh) eluting with a gradient of 10- 80% EtOAc in hexanes) to provide the title compound 30.0 (1125 g, 3.22 mol, 92%) as a white solid. 1H-NMR (400 MHz, CDCl3) delta 7.23 (dd, J = 2.08, 6.62 Hz, 4H), 6.90 (dd, J = 2.12, 6.60 Hz, 4H), 4.29 (s, 4H), 3.83 (m, 6H), 2.92 (q, J = 7.40 Hz, 2H), 1.33 (t, J = 7.40 Hz, 3H). GC-LCMS (ESI pos. ion) m/z: = 372.2 (M+Na)+.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; CHENG, Alan C.; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; PATTAROPONG, Vatee; SWAMINATH, Gayathri; KREIMAN, Charles; MOEBIUS, David C.; SHARMA, Ankit; (543 pag.)WO2018/93580; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Discovery of 17061-62-0

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 17061-62-0, name is Bis(4-methoxybenzyl)amine, A new synthetic method of this compound is introduced below., Quality Control of Bis(4-methoxybenzyl)amine

4-(3-Formyl-2-methoxy-phenoxymethyl)-N N-bis-(4-methoxy-benzyl)-benzenesulfonamide A solution of 4-(bromomethyl)benzenesulfonyl chloride (5.6 mmol) in 5 mL of CH2Cl2 at 25 C. is treated with Et3 N (8.4 mmol) followed by bis-(4-methoxy-benzyl)-amine (5.8 mmol). The reaction is stirred for 12 hours, diluted with H2O, extracted with CH2Cl2, dried (MgSO4), filtered and concentrated. The resultant crude material is purified by silica flash chromatography (20% EtOAc/hexanes) to yield 4-bromomethyl-N,N-bis-(4-methoxy-benzyl)-benzenesulfonamide: 1H NMR (400 MHz, CDCl3): delta 7.72 (apparent t, J=8.4 Hz, 2H), 7.44 (dd, J1=1.6 Hz, J2=8.4 Hz, 2H), 6.91-6.86 (m, 4H), 6.69 (d, J=8.8 Hz, 4H), 4.5 (s, 2H), 4.19 (s, 4H), 3.71 (s, 3H); LC/MS: (ES+) 490.1 (M+1)+.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; IRM LLC; US2009/325981; (2009); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of 17061-62-0

The chemical industry reduces the impact on the environment during synthesis Bis(4-methoxybenzyl)amine. I believe this compound will play a more active role in future production and life.

Reference of 17061-62-0, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 17061-62-0, name is Bis(4-methoxybenzyl)amine, This compound has unique chemical properties. The synthetic route is as follows.

1.3 Preparation of 2-Amino-4-chloro-6-di-(4-methoxybenzyl)amino-5-pyrimidine Carbaldehyde 2-Amino-4,6-dichloro-5-pyrimidine carbaldehyde (0.50 g; 2.60 mmol) was stirred in dry DCM (5 ml). Triethylamine (0.263 g; 2.60 mmol) and di(4-methoxybenzyl)amine (0.669 g; 2.60 mmol) were added and the reaction stirred at r.t for 1.25 h. the reaction was worked up by addition of further DCM (50 ml) and extraction with saturated sodium chloride solution (3*50 ml). The organic layer was washed with water (50 ml), dried (MgSO4) and evaporated yielding a yellow foam (0.957 g; 2.32 mmol; 89.2%).

The chemical industry reduces the impact on the environment during synthesis Bis(4-methoxybenzyl)amine. I believe this compound will play a more active role in future production and life.

Reference:
Patent; Cancer Research Campaign Technology Limited; US6677345; (2004); B1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Brief introduction of 17061-62-0

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Bis(4-methoxybenzyl)amine, its application will become more common.

Electric Literature of 17061-62-0,Some common heterocyclic compound, 17061-62-0, name is Bis(4-methoxybenzyl)amine, molecular formula is C16H19NO2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of N,N-bis(4-methoxybenzyl)amine (Intermediate EEl 1; 200 g, 775.19 mmol) in DCM (2.5 L) was added Et3N (336.17 mL, 2325.5 mmol), andthe reaction mixture was cooled to 0 C. Ethanesulfonyl chloride ( 95 mL,1007.75 mmol) was added in drop-wise manner followed by DMAP (19.0 g,155.03 mmol). The resulting reaction mixture was stirred at ambient temperaturefor 30 mm. The reaction was monitored by TLC and upon completion, themixture was diluted with H20 and the layers were separated and the aqueousphase was extracted with DCM (3 x 1.5 L). The combined organic layer waswashed with H20, brine, and dried over Na2504. The solvent was removed under reduced pressure to afford the cmde material which was purified by column chromatography over 5i02 gel (100-200 mesh), eluting with a gradient of 0-12% EtOAc in hexane affording the title compound (145 g, 5 3.4%) as a white fluffy solid.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Bis(4-methoxybenzyl)amine, its application will become more common.

Reference:
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

New downstream synthetic route of C16H19NO2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Bis(4-methoxybenzyl)amine, its application will become more common.

Synthetic Route of 17061-62-0,Some common heterocyclic compound, 17061-62-0, name is Bis(4-methoxybenzyl)amine, molecular formula is C16H19NO2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

N,N-bis(4-methoxybenzyl)ethanesulfonamide, Example 12.0. To a solution of bis(4-methoxybenzyl)amine 12.01 (900 g, 3.49 mol, 1 eq) in DCM (9 L) was added TEA (634 mL, 4.55 mol, 1.3 eq), followed by dropwise addition of ethanesulfonyl chloride (399 mL, 4.19 mol, 1.2 eq). (The internal temperature was kept between 5-10 C during the addition of the ethane sulfonyl chloride). Once the addition was complete, the cooling bath was removed. After 1.5 h, TLC showed complete loss of starting material. The reaction was quenched by the addition of water (4 L) to the reaction mixture. The layers were separated and the aqueous layer extracted with DCM (2 x 2 L). The combined organic layers were washed with brine (2x 1 L), dried over Na2SO4, and concentrated in vacuo. The material thus obtained was adsorbed onto a plug of silica gel and purified by chromatography (silica gel (60-120 mesh) eluting with a gradient of 10- 80% EtOAc in hexanes) to provide the title compound 12.0 (1125 g, 3.22 mol, 92%) as white solid. ?H-NMR (400 MHz, CDC13) 7.23 (dd, J= 2.08, 6.62 Hz, 4H), 6.90 (dd, J= 2.12, 6.60 Hz, 4H), 4.29 (s, 4H), 3.83 (s, 6H), 2.92 (q, J 7.40 Hz, 2H), 1.33 (t, J 7.40 Hz, 3H). GC-MS (ESI pos. ion) m/z: 372.2 (M+Na).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route Bis(4-methoxybenzyl)amine, its application will become more common.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HEATH, Julie Anne; HORNE, Daniel B.; HOUZE, Jonathan; KALLER, Matthew R.; KHAKOO, Aarif Yusuf; KOPECKY, David John; LAI, Su-Jen; MA, Zhihua; MCGEE, Lawrence R.; MEDINA, Julio C.; MIHALIC, Jeffrey T.; NISHIMURA, Nobuko; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; YANG, Kevin; YEH, Wen-Chen; DEBENEDETTO, Mikkel V.; FARRELL, Robert P.; HEDLEY, Simon J.; JUDD, Ted C.; KAYSER, Frank; (1266 pag.)WO2016/187308; (2016); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Introduction of a new synthetic route about C16H19NO2

The synthetic route of Bis(4-methoxybenzyl)amine has been constantly updated, and we look forward to future research findings.

Synthetic Route of 17061-62-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 17061-62-0, name is Bis(4-methoxybenzyl)amine belongs to ethers-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below.

[0407j N,N-bis(4-methoxybenzyl)methanesulfonamide, Example 13.0. To a solution of bis(4-methoxybenzyl)amine 12.01 (100 g, 0.389 mol, 1 eq) in DCM (1 L) was added TEA (71 mL, 0.506 mol, 1.3 eq) followed by dropwise addition of methanesulfonyl chloride (36 mL, 0.46 mol, 1.2 eq). (The internal temperature was kept between 5-10 C during the addition of the methane sulfonyl chloride). Once the addition was complete, the cooling bath was removed. After 1.5 h, TLC showed complete loss of starting material. Water (1 L) was added to the reaction. The layers were separated and the aqueous layer was extracted with DCM (2x 500 mL). The combined organic layers were washed with brine (2x 1 L), dried over Na2SO4, and concentrated in vacuo. The material thus obtained was absorbed onto a plug of silica gel and purified by chromatography (silica gel (60-120 mesh) eluting with a gradient of 10-80% EtOAc in hexanes) to provide 120 g (0.36 mol, 92%) of the title compound Example 13.0 as white solid. ?H-NMR(400 MHz, CDC13) 7.26 (dd, J= 2.12, 6.60 Hz, 4H), 6.91 (dd, J= 2.12, 6.62 Hz, 4H), 4.28 (s, 4H), 3.83 (s, 6H), 2.75 (s, 3H). GC-MS (ESI p05. ion) mlz: = 335 (M+H).

The synthetic route of Bis(4-methoxybenzyl)amine has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HEATH, Julie Anne; HORNE, Daniel B.; HOUZE, Jonathan; KALLER, Matthew R.; KHAKOO, Aarif Yusuf; KOPECKY, David John; LAI, Su-Jen; MA, Zhihua; MCGEE, Lawrence R.; MEDINA, Julio C.; MIHALIC, Jeffrey T.; NISHIMURA, Nobuko; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; YANG, Kevin; YEH, Wen-Chen; DEBENEDETTO, Mikkel V.; FARRELL, Robert P.; HEDLEY, Simon J.; JUDD, Ted C.; KAYSER, Frank; (1266 pag.)WO2016/187308; (2016); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of 17061-62-0

The synthetic route of 17061-62-0 has been constantly updated, and we look forward to future research findings.

17061-62-0, name is Bis(4-methoxybenzyl)amine, belongs to ethers-buliding-blocks compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. Recommanded Product: 17061-62-0

To a stirred solution of 100.1 (100 g, 0.39 mol) in DCM (1 L) was added TEA (71 mL, 0.51 mol), followed by dropwise addition of methanesulfonyl chloride (36 mL, 0.47 mol). The internal temperature was kept between 5-10 C during the addition of methane sulfonyl chloride. Once the addition was complete, the cooling bath was removed and the mixture was stirred at RT until TLC analysis indicated that the reaction was complete. Thereafter, water (1 L) was added, the layers were separated and the aqueous layer was extracted with DCM (2 x 500 mL). The combined organic layers were washed with brine (2 x 1 L), dried over Na2SO4, and concentrated in vacuo. The residue was purified on a silica gel column, employing a gradient of 10-80% EtOAc in hexanes, to afford 120 g (0.36 mol, 92%) of 101.0 as white solid.1H-NMR (400 MHz, CDCl3) delta 7.26 (dd, J=2.12, 6.60 Hz, 4H) 6.91 (dd, J=2.12, 6.62 Hz, 4H) 4.28 (s, 4H) 3.83 (s, 6H) 2.75 (s, 3H).

The synthetic route of 17061-62-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Yinhong; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; KREIMAN, Charles; (308 pag.)WO2018/93579; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Simple exploration of 17061-62-0

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Bis(4-methoxybenzyl)amine, other downstream synthetic routes, hurry up and to see.

Electric Literature of 17061-62-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 17061-62-0, name is Bis(4-methoxybenzyl)amine belongs to ethers-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below.

[09331 N,N-bis(4-methoxybenzyl)ethenesulfonamide, Example 460.1. To1 L round bottomed flask was added bis(4-methoxvbenzvl)amine 12.01 (23.16 g, 90 mmol) and TEA (anhydrous (43.8 mL, 315 mmol)) in DCM (200 mL). At 0 C (ice bath), 2-chloro-1-ethanesulfonyl chloride (10.41 mL, 99 mmol) in DCM (100 mL) was added dropwise with stirring. The reaction mixture was stirred at 0 C for 3 h after completion of the addition. LCMS analysis indicated the reaction was complete. The reaction mixture was diluted with water and extracted with DCM. The organic extract was washed with brine and dried over Na2SO4. The solution was filtered and concentrated in vacuo to give the initial material as a light-yellow oil, which was purified by silica gel chromatography (a gradient of 0-60% EtOAc in hexanes), to provide 460.1 (23 g, 66.2 mmol, 74% yield) as a white solid. LCMS-ESI (POS), mlz: 370.1 (M+Na).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, Bis(4-methoxybenzyl)amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HEATH, Julie Anne; HORNE, Daniel B.; HOUZE, Jonathan; KALLER, Matthew R.; KHAKOO, Aarif Yusuf; KOPECKY, David John; LAI, Su-Jen; MA, Zhihua; MCGEE, Lawrence R.; MEDINA, Julio C.; MIHALIC, Jeffrey T.; NISHIMURA, Nobuko; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; YANG, Kevin; YEH, Wen-Chen; DEBENEDETTO, Mikkel V.; FARRELL, Robert P.; HEDLEY, Simon J.; JUDD, Ted C.; KAYSER, Frank; (1266 pag.)WO2016/187308; (2016); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem