Adding some certain compound to certain chemical reactions, such as: 1535-73-5, name is 3-Trifluoromethoxyaniline, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 1535-73-5. 1535-73-5
General procedure: To a stirred solution of 11 (13.14 mmol) in 1,2-dichloroethane (240 mL) were added appropriate substituted anilines (19.71 mmol) and AcOH (13.14 mmol), and the mixture was heated to reflux for 2 h under nitrogen atmosphere. The reaction mixture was cooled to 0 °C, and MeOH (60 mL) and THF (20 mL) were added. To it, (AcO)3BHNa (26.20 mmol) or NaBH4 (52.56 mmol) was added portionwise, and then the reaction mixture was allowed to warm to room temperature and stirred for an additional 3 h. The pH of the reaction mixture was adjusted to 7?8 at 0 °C with 1 NHCl, and then the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (2× 300 mL). The combined organic layers was washed with brine (300 mL) and dried over anhydrous Na2SO4, filtered, and evaporated to dryness under reduced pressure. The residue was purified by MPLC on silica gel to afford the titled compounds as a solid.
Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Trifluoromethoxyaniline.
Reference:
Article; Jin, Cheng Hua; Krishnaiah, Maddeboina; Sreenu, Domalapally; Subrahmanyam, Vura Bala; Park, Hyun-Ju; Park, So-Jung; Sheen, Yhun Yhong; Kim, Dae-Kee; Bioorganic and Medicinal Chemistry; vol. 22; 9; (2014); p. 2724 – 2732;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem