Titan, S. M. published the artcileMetabolites related to eGFR: Evaluation of candidate molecules for GFR estimation using untargeted metabolomics, Application In Synthesis of 121-00-6, the main research area is metabolite eGFR untargeted metabolomics; CKD; GFR; Metabolomics.
Metabolomics can be used to identify novel metabolites related to renal function and that could therefore be used for estimating GFR. We evaluated metabolites replicated and related to eGFR in 3 studies (CKD and general population). Metabolomics was performed by GC-MS. The Progredir Cohort (n = 454, class 3 and 4 CKD) was used as the derivation study and adjusted linear regression models on eGFR-CKDEPI were built. Bonferroni correction was applied for selecting metabolites to be independently validated in the Diabetic Nephropathy Study (n = 56, macroalbuminuric DN) and in the Baependi Heart Study (BHS, n = 1145, general population). In the Progredir Cohort, 72 metabolites where associated with eGFR. Of those, 11 were also significantly associated to eGFR in the DN Study and 8 in the BHS. Four metabolites were replicated and significantly associated to eGFR in all 3 studies: D-threitol, myo-inositol, 4-deoxierythronic acid and galacturonic acid. In addition, pseudouridine was strongly correlated to eGFR only in the 2 CKD populations. Our results demonstrate metabolites that are potential biomarkers of renal function: D-threitol, myo-inositol, 4-deoxierythronic acid, galacturonic acid and pseudouridine. Further investigation is needed to determine their performance against otherwise gold-standard methods, most notably among those with normal eGFR.
Clinica Chimica Acta published new progress about Albuminuria. 121-00-6 belongs to class ethers-buliding-blocks, name is 4-Hydroxy-3-tert-butylanisole, and the molecular formula is C11H16O2, Application In Synthesis of 121-00-6.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem