Liang, Jian-Hua et al. published their research in Heterocycles in 2003 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 1,1-Diisopropoxycyclohexane

Synthesis and crystal structure of 2′,4”-O-bis(trimethylsilyl)erythromycin a 9-O-(1-isopropoxycyclohexyl) oxime was written by Liang, Jian-Hua;Yao, Guo-Wei. And the article was included in Heterocycles in 2003.Safety of 1,1-Diisopropoxycyclohexane This article mentions the following:

The ratio of E/Z of 2′-,4”-O-bis(trimethylsilyl)erythromycin A 9-O-(1-isopropoxycyclohexyl) oxime were much higher prepared in CH3CN than those in CH2Cl2. And the ratio would increase with elevation of temperature Compared with 2′-OH, 4”-OH was liable to be silylated in the presence of 1,1,1,3,3,3-hexamethyldisilizane and an NH4+. The crystal structure of E-title compound was determined by single-crystal X-Ray structure anal. to elucidate the origin of regioselectivity occurring at 6-hydroxyl group in the O-methylation of erythromycin A. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Safety of 1,1-Diisopropoxycyclohexane).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 1,1-Diisopropoxycyclohexane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhu, Zhaohai J. et al. published their research in Tuberculosis (Oxford, United Kingdom) in 2008 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of 1,1-Diisopropoxycyclohexane

Structure-activity relationships of macrolides against Mycobacterium tuberculosis was written by Zhu, Zhaohai J.;Krasnykh, Olga;Pan, Dahua;Petukhova, Valentina;Yu, Gengli;Liu, Yinghui;Liu, Huiwen;Hong, Saweon;Wang, Yuehong;Wan, Baojie;Liang, Wenzhong;Franzblau, Scott G.. And the article was included in Tuberculosis (Oxford, United Kingdom) in 2008.Safety of 1,1-Diisopropoxycyclohexane This article mentions the following:

Existing 14, 15 and 16-membered macrolide antibiotics, while effective for other bacterial infections, including some mycobacteria, have not demonstrated significant efficacy in tuberculosis. Therefore an attempt was made to optimize this class for activity against Mycobacterium tuberculosis through semisyntheses and bioassay. Approx. 300 macrolides were synthesized and screened for anti-TB activity. Structural modifications on erythromycin were carried out at positions 3, 6, 9, 11, and 12 of the 14-membered lactone ring; as well as at position 4″ of cladinose and position 2′ of desosamine. In general, the synthesized macrolides belong to four subclasses: 9-oxime, 11,12-carbamate, 11,12-carbazate, and 6-O-substituted derivatives Selected compounds were assessed for mammalian cell toxicity and in some cases were further assessed for CYP3A4 inhibition, microsome stability, in vivo tolerance and efficacy. The activity of 11,12-carbamates and carbazates as well as 9-oximes is highly influenced by the nature of the substitution at these positions. For hydrophilic macrolides, lipophilic substitution may result in enhanced potency, presumably by enhanced passive permeation through the cell envelope. This strategy, however, has limitations. Removal of the C-3 cladinose generally reduces the activity. Acetylation at C-2′ or 4″ maintains potency of C-9 oximes but dramatically decreases that of 11,12-substituted compounds Further significant increases in the potency of macrolides for M. tuberculosis may require a strategy for the concurrent reduction of ribosome methylation. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Safety of 1,1-Diisopropoxycyclohexane).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of 1,1-Diisopropoxycyclohexane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Mingwei et al. published their research in Medicinal Chemistry Research in 2003 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1,1-Diisopropoxycyclohexane

Synthesis and bioactivity of erythromycin derivatives was written by Chen, Mingwei;Muri, Estela M. F.;Jacob, Melissa;Williamson, John S.. And the article was included in Medicinal Chemistry Research in 2003.Recommanded Product: 1,1-Diisopropoxycyclohexane This article mentions the following:

A small series of semisynthetic 6-O-alkylated erythromycin derivatives were synthesized and evaluated for their antimicrobial activity. A dichlorobenzenyl 6-O-allyl erythromycin derivative (I) was found to be active against Cryptococcus neoformans (IC50 5.0 娓璯/mL), Staphylococcus aureus (IC50 5.0 娓璯/mL), and methicillin-resistant S. aureus (IC50 5.0 娓璯/mL). In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Recommanded Product: 1,1-Diisopropoxycyclohexane).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1,1-Diisopropoxycyclohexane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Mingwei et al. published their research in Medicinal Chemistry Research in 2003 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1,1-Diisopropoxycyclohexane

Synthesis and bioactivity of erythromycin derivatives was written by Chen, Mingwei;Muri, Estela M. F.;Jacob, Melissa;Williamson, John S.. And the article was included in Medicinal Chemistry Research in 2003.Recommanded Product: 1,1-Diisopropoxycyclohexane This article mentions the following:

A small series of semisynthetic 6-O-alkylated erythromycin derivatives were synthesized and evaluated for their antimicrobial activity. A dichlorobenzenyl 6-O-allyl erythromycin derivative (I) was found to be active against Cryptococcus neoformans (IC50 5.0 μg/mL), Staphylococcus aureus (IC50 5.0 μg/mL), and methicillin-resistant S. aureus (IC50 5.0 μg/mL). In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Recommanded Product: 1,1-Diisopropoxycyclohexane).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1,1-Diisopropoxycyclohexane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Tian, Jing-Chao et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2017 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Category: ethers-buliding-blocks

Design, synthesis and structure-bactericidal activity relationships of novel 9-oxime ketolides and reductive epimers of acylides was written by Tian, Jing-Chao;Han, Xu;Lv, Wei;Li, Ya-Xin;Wang, Hui;Fan, Bing-Zhi;Cushman, Mark;Liang, Jian-Hua. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2017.Category: ethers-buliding-blocks This article mentions the following:

Erythromycin was long viewed as a bacteriostatic agent. The erythromycin derivatives, 9-oxime ketolides have a species-specific bactericidal profile. Among them, the 3′-allyl version of the 9-oxime ketolide is bactericidal against Streptococcus pneumoniae and Streptococcus pyogenes. In contrast, the 2-fluoro analogs show bactericidal activities against S. pneumoniae, Staphylococcus aureus and Moraxella catarrhalis, while the 2-fluoro analogs are only bactericidal against S. pneumoniae and Haemophilus influenzae. Reduction of the ketolides led to novel epi-acylides, the 3-O-epimers of the acylides. Alteration of linker length, 2-fluorination and incorporation of addnl. spacers at the 9-oxime or 6-OH did not restore the epi-acylides back to be as active as the acylide. Mol. docking suggested that epimerization at the 3-position reshapes the orientation of the 3-O-side chain and leads to considerably weaker binding with bacterial ribosomes. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Category: ethers-buliding-blocks).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liang, Jianhua et al. published their research in Zhongguo Yaowu Huaxue Zazhi in 2005 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application In Synthesis of 1,1-Diisopropoxycyclohexane

Isomerization of oxime-ether during synthesis of clarithromycin was written by Liang, Jianhua;Yao, Guowei. And the article was included in Zhongguo Yaowu Huaxue Zazhi in 2005.Application In Synthesis of 1,1-Diisopropoxycyclohexane This article mentions the following:

The synthesis of clarithromycin was improved by studying the etherification of erythromycin A oxime. The competition between kinetic equilibrium and thermodn. equilibrium would alter the original equilibrium existing between E-oxime and Z-oxime in the presence of acid or base. Under acidic conditions Z-oxime should have been converted into E-oxime, but the etherification results suggested that the procedure reversed. Pure E-oxime and the mixture of E-oxime and Z-oxime (> 7.3: 1, E/Z) would give the etherification products with the same ratio of E/Z, which was determined by the etherification conditions of oxime. Solvents and temperature mainly determined the ratio of E/Z of the products, which was higher than 6 in CH3CN and less than 6 in CH2Cl2, and in CH2Cl2 higher than 4 at 30°C and less than 4 at 20°C. Temperature had more influence on the products in CH2Cl2 than those in CH3CN. Reducing the amount of Z-oxime ether in etherification could enhance the yield of clarithromycin, because E-oxime ether derivatives appeared to be more regioselective than the corresponding Z-isomer. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Application In Synthesis of 1,1-Diisopropoxycyclohexane).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application In Synthesis of 1,1-Diisopropoxycyclohexane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sugimoto, Tomohiro et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2012 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Related Products of 1132-95-2

Synthesis and antibacterial activity of 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides was written by Sugimoto, Tomohiro;Shimazaki, Yoichi;Manaka, Akira;Tanikawa, Tetsuya;Suzuki, Keiko;Nanaumi, Kayoko;Kaneda, Yoshie;Yamasaki, Yukiko;Sugiyama, Hiroyuki. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2012.Related Products of 1132-95-2 This article mentions the following:

Macrolide antibiotics are widely prescribed for the treatment of respiratory tract infections; however, the increasing prevalence of macrolide-resistant pathogens is a public health concern. Therefore, the development of new macrolide derivatives with activities against resistant pathogens is urgently needed. A series of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides has been synthesized from erythromycin A. These compounds have shown very promising in vitro and in vivo antibacterial activities against key respiratory pathogens including erythromycin-susceptible/resistant strains. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Related Products of 1132-95-2).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Related Products of 1132-95-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem