Wei, Shuangying et al. published their research in Electrochimica Acta in 2019 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Glyme-based electrolytes for lithium metal batteries using insertion electrodes: An electrochemical study was written by Wei, Shuangying;Li, Zhenguang;Kimura, Kento;Inoue, Shoichi;Pandini, Loris;Di Lecce, Daniele;Tominaga, Yoichi;Hassoun, Jusef. And the article was included in Electrochimica Acta in 2019.Recommanded Product: 112-49-2 This article mentions the following:

We report an electrochem. study of end-capped glymes dissolving lithium salts as electrolyte solutions for lithium metal batteries. Various electrolyte formulations including triethylene and diethylene glycol di-Me ethers as solvents and lithium salts employing bis(fluorosulfonyl)imide (FSI), bis(trifluoromethanesulfonyl)imide (TFSI), and bis(pentafluoroethanesulfonyl)imide (BETI) anions are explored. The ion transport properties, the lithium/electrolyte interphase characteristics and the electrochem. stability window are investigated by means of chronoamperometry, electrochem. impedance spectroscopy, galvanostatic cycling, and voltammetry measurements. The comparative study suggests electrochem. properties well suitable for lithium battery application which enable long cycling. The electrolyte solutions are studied in cells using an insertion cathode material, i.e., lithium iron phosphate (LiFePO4), and the high-energy lithium metal anode. The results reveal that the electrolyte composition has a remarkable effect on the cell performances, and indicate the solutions of LiTFSI salt in either glymes as the most adequate formulations for possible applications among the ones herein investigated. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Fei et al. published their research in Water Research in 2022 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.COA of Formula: C8H18O4

Effect of osmotic ballast properties on the performance of a concentration gradient battery was written by Liu, Fei;Kingsbury, Ryan S.;Rech, Jeromy J.;You, Wei;Coronell, Orlando. And the article was included in Water Research in 2022.COA of Formula: C8H18O4 This article mentions the following:

A concentration gradient battery (CGB) is an energy storage system comprised of a series of concentrated and dilute salt solution compartments, separated by ion exchange membranes (IEMs). The battery is charged by electrodialysis (ED), which increases the concentration gradient between these solutions, and discharged by reverse electrodialysis (RED), which allows these solutions to mix. In both ED and RED, water moves by osmosis from dilute to concentrated compartments, reducing the CGB faradaic and energy efficiency. A promising approach to mitigate osmosis is to use an osmotic ballast in the dilute solution to balance the osmotic pressure and reduce faradaic energy losses. The objective of this study was to investigate the impact of ballast properties (i.e., size, structure, end-group) on the faradaic and round-trip efficiency of the CGB. To accomplish this objective, we tested seven sugar and five glycol compounds as osmotic ballasts in a closed-loop cell. Results show that ballasts with high mol. weight generally resulted in higher faradaic efficiency and lower water transport compared with low mol. weight ballasts. Data also indicates that ballast with a cyclic structure (instead of linear), non-planar structure (instead of planar), and lower number of Me end-groups led to lower water transport. Of all ballasts tested, sucrose performed best in terms of reducing non-ideal water transport (by 109%) and enhancing both faradaic and round-trip efficiencies (from 47.4% to 77.7% and 25.5% to 38.1%, resp.) compared with the non-ballasted CGB. Our results contribute to fundamental understanding of the impact of solute properties on water and small organic mol. transport in ion exchange membranes and indicate that ballasted CGBs can be further improved through development of optimized ballasts and selection of optimum membrane-ballast pairs. The improved understanding of ballast impact on CGB performance could be used for evaluation of potential ballast benefits in other membrane-based systems that may be impacted by osmosis such as the acid-base flow battery, waste heat recovery using RED, ED purification processes, osmotically assisted processes, and redox flow batteries. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2COA of Formula: C8H18O4).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.COA of Formula: C8H18O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kanemoto, Kazuya et al. published their research in Chemistry Letters in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Recommanded Product: 112-49-2

Synthesis of Phenoxathiins and Phenothiazines by Aryne Reactions with Thiosulfonates was written by Kanemoto, Kazuya;Sakata, Yuki;Hosoya, Takamitsu;Yoshida, Suguru. And the article was included in Chemistry Letters in 2020.Recommanded Product: 112-49-2 This article mentions the following:

Novel synthetic methods for phenoxathiins e.g., I and phenothiazines II (R = H, OMe, morpholin-4-yl, etc.) by aryne reactions e.g., 2-(trimethylsilyl)phenyl triflate are disclosed. Here, it was found that phenoxathiins e.g., I were efficiently prepared by the reaction between aryne intermediates and S-(2-hydroxyaryl) 4-toluenethiosulfonates R1-2-OHC6H3STs (R1 = H, 5-Me, 4-OMe). A synthetic method for phenothiazines II was also developed by the reaction of arynes with S-(2-aminophenyl)-4-toluenethiosulfonate. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Recommanded Product: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

He, Hao et al. published their research in Macromolecules (Washington, DC, United States) in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Product Details of 112-49-2

Enhancement in the Mechanical Stretchability of PEDOT:PSS Films by Compounds of Multiple Hydroxyl Groups for Their Application as Transparent Stretchable Conductors was written by He, Hao;Zhang, Lei;Yue, Shizhong;Yu, Suzhu;Wei, Jun;Ouyang, Jianyong. And the article was included in Macromolecules (Washington, DC, United States) in 2021.Product Details of 112-49-2 This article mentions the following:

It is of significance to develop stretchable conductors for flexible electronics. Although intrinsically conducting polymers like poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) can exhibit high conductivity, they have limited mech. stretchability because of the rigid conjugated backbone and strong interchain interaction. Here, we report the significant enhancement in the mech. stretchability of PEDOT:PSS films by adding a compound of two or more hydroxyl groups like glycerol, malic acid, 1,2,6-hexanetriol, or triethylene glycol. The elongation at break can be enhanced from <10% of pristine PEDOT:PSS films to >50%. The enhancement in the mech. stretchability is less significant when other compounds with only one hydroxyl or no hydroxyl group are used. The effect of the compounds with multiple hydroxyl groups on the stretchability of PEDOT:PSS is related to the Hansen solubility parameter (HSP) δh. A compound with a higher δh value can give rise to a more significant plasticization of PEDOT:PSS. The mechanism is attributed to the destruction of hydrogen bonds among the chains of poly(styrenesulfonic acid) (PSSH) by the compounds of multiple hydroxyl groups. This effectively lowers the interchain interaction among the PSSH and thus increases the mech. stretchability of PEDOT:PSS. Simultaneously, these compounds can induce secondary doping to saliently enhance the conductivity of PEDOT:PSS films. The highly stretchable and highly conductive PEDOT:PSS films can be used as transparent stretchable conductors. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Product Details of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Jankowski, Piotr et al. published their research in Batteries & Supercaps in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 112-49-2

Structure of Magnesium Chloride Complexes in Ethereal Systems: Computational Comparison of THF and Glymes as Solvents for Magnesium Battery Electrolytes was written by Jankowski, Piotr;Lastra, Juan Maria Garcia;Vegge, Tejs. And the article was included in Batteries & Supercaps in 2020.Recommanded Product: 112-49-2 This article mentions the following:

The structure of the electrolyte is crucial for the performance of rechargeable magnesium batteries. Doubly charged cations interact much stronger with both anions and solvent mols., forming different size clusters. Here, we apply DFT calculations to investigate salt solvation by altering the first solvation shell of the magnesium-chloride complexes in different ethereal solvents: THF, monoglyme, diglyme, triglyme and tetraglyme. The anal. was performed by looking for the most stable structures, considering mono-, di- and trimeric clusters of MgxCly. The determination of clusters geometries, together with their energies, resulted in a comprehensive picture of the thermodynamically preferred state of the electrolyte, and allowed for a simple assessment of the electrochem. activity of the electrolyte. Our anal. shows that clustering is beneficial for desolvation of magnesium from the cluster, but causes overpotentials due to hindered electron transfer. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Lo Presti, Francesca et al. published their research in Dalton Transactions in 2022 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Formula: C8H18O4

Journey of a molecule from the solid to the gas phase and vice versa: direct estimation of vapor pressure of alkaline-earth metalorganic precursors for atmospheric pressure vapor phase deposition of fluoride films was written by Lo Presti, Francesca;Pellegrino, Anna L.;Malandrino, Graziella. And the article was included in Dalton Transactions in 2022.Formula: C8H18O4 This article mentions the following:

Atm. pressure (AP) vapor phase processes such as spatial at. layer deposition (S-ALD) and AP-metalorganic chem. vapor deposition (AP-MOCVD) are becoming increasingly appealing for their use in a variety of academic and industrial applications. Evaluation of precursor vapor pressures is crucial for their application in AP processes and to this aim the Langmuir equation has been applied as a simple and straightforward method for estimating the vapor pressure and vaporization enthalpy of various metalorganic precursors. Using benzoic acid as a calibration reference, the vapor pressure-temperature curves for several alk.-earth β-diketonate fluorinated compounds, with mol. formula “M(hfa)2·L” (with M = Mg, Ca, Sr, Ba; Hhfa = 1,1,1,5,5,5-hexafluoroacetylacetone and L = diglyme, triglyme, and tetraglyme) are derived from their termogravimetric curves. Thus, the enthalpy of vaporization of all complexes has been estimated using the Clausius-Clapeyron equation. As a proof of concept, preliminary results on the use of [Mg(hfa)2·2H2O]·2diglyme and [Ca(hfa)2·diglyme·H2O] or [Ca(hfa)2·triglyme] as precursors for AP-MOCVD deposition of MgF2 and CaF2 in the form of thin films are presented. This approach may be used to easily determine vapor pressures of complexes and thus evaluate “a priori” the suitability of a compound as precursor for AP-MOCVD and/or spatial ALD. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Formula: C8H18O4).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Formula: C8H18O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sawas, Abdulrazzag et al. published their research in Electrochimica Acta in 2019 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 112-49-2

Electrocatalysis driven high energy density Li-ion polysulfide battery was written by Sawas, Abdulrazzag;Babu, Ganguli;Thangavel, Naresh Kumar;Arava, Leela Mohana Reddy. And the article was included in Electrochimica Acta in 2019.HPLC of Formula: 112-49-2 This article mentions the following:

Though carbon-based porous materials have improved lithium-sulfur (Li-S) battery performance remarkably, the poor adsorption of polysulfides and their sluggish reaction kinetics limits them from practical application. On the other hand, the presence of lithium metal especially under the highly reactive polysulfide environment causes safety concerns. Herein, we use electrocatalytically active cathode and metallic lithium-free anode to construct Li-ion polysulfide battery with enhanced reversibility and safety. Stabilizing lithium polysulfides and enhancing the reaction kinetics with minimal polarization using platinum/graphene composite holds the key to obtaining better performance, which is realized against conventional metallic lithium as well as pre-lithiated porous silicon electrodes. The electrocatalyst containing cathode composites are comparable with graphene-based electrodes regarding enhanced specific capacity retention and better reversibility in charge/discharge behavior. Furthermore, metallic lithium-free polysulfide batteries displayed exceptional performance with an energy d. of 450 Wh kg-1 considering the weight of both the electroactive materials and a capacity retention of about 70% for 240 charge-discharge cycles. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2HPLC of Formula: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kitada, Atsushi et al. published their research in Hyomen Gijutsu in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Reference of 112-49-2

Development of room-temperature electrodeposition techniques for metallic Mg and metallic Al using safe electrolytes and applications to next-generation battery and/or future plating was written by Kitada, Atsushi. And the article was included in Hyomen Gijutsu in 2020.Reference of 112-49-2 This article mentions the following:

This paper describes development of room-temperature electrodeposition techniques for metallic magnesium and metallic aluminum using safe electrolytes and applications to next-generation battery and/or future plating. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Reference of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Reference of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Yamaguchi, Toru et al. published their research in Journal of Molecular Liquids in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 2,5,8,11-Tetraoxadodecane

Simulations of dielectric constants and viscosities of organic electrolytes by quantum mechanics and molecular dynamics was written by Yamaguchi, Toru;Yamada, Hidetaka;Fujiwara, Takayuki;Hori, Kenji. And the article was included in Journal of Molecular Liquids in 2020.Recommanded Product: 2,5,8,11-Tetraoxadodecane This article mentions the following:

Dielec. constants and viscosities are important phys. properties of organic electrolytes. Therefore, predicting these properties by practical computer simulations is valuable for developing new batteries. Here, a combination of quantum mech. calculations and mol. dynamics simulations was used to predict these properties for 17 electrolytes. The computed results were assembled using the Kirkwood-Onsager and the Green-Kubo relational equation to obtain the dielec. constants and viscosities, resp. In particular, Kirkwood’s g-factors were derived based on the method developed by Zhang et al. in 2016. The coefficients of determination (R2) for the dielec. constants and viscosities were calculated to be 0.9875 and 0.9230, resp. It was confirmed that both quantum mech. calculations for elec. properties and mol. dynamics simulations for macroscopic effects can well reproduce the abovementioned properties for a wide range of organic electrolytes. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 2,5,8,11-Tetraoxadodecane).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 2,5,8,11-Tetraoxadodecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Henschel, Henning et al. published their research in Journal of Chemical Theory and Computation in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C8H18O4

Theoretical Infrared Spectra: Quantitative Similarity Measures and Force Fields was written by Henschel, Henning;Andersson, Alfred T.;Jespers, Willem;Mehdi Ghahremanpour, Mohammad;van der Spoel, David. And the article was included in Journal of Chemical Theory and Computation in 2020.Electric Literature of C8H18O4 This article mentions the following:

IR spectroscopy can provide significant insight into the structures and dynamics of mols. of all sizes. The information that is contained in the spectrum is, however, often not easily extracted without the aid of theor. calculations or simulations. We present here the calculation of the IR spectra of a database of 703 gas phase compounds with four different force fields (CGenFF, GAFF-BCC, GAFF-ESP, and OPLS) using normal-mode anal. Modern force fields increasingly use virtual sites to describe, e.g., lone-pair electrons or the σ-holes on halogen atoms. This requires some adaptation of code to perform normal-mode anal. of such compounds,the implementation of which into the GROMACS software is briefly described as well. For the quant. comparison of the obtained spectra with exptl. reference data, we discuss the application of two different statistical correlation coefficients, Pearson and Spearman. The advantages and drawbacks of the different methods of comparison are discussed, and we find that both methods of comparison give the same overall picture, showing that present force field methods cannot match the performance of quantum chem. methods for the calculation of IR spectra. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Electric Literature of C8H18O4).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C8H18O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem