Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Formula: C18H17NO5.
Caldwell, Alexander S.;Rao, Varsha V.;Golden, Alyxandra C.;Bell, Daniel J.;Grim, Joseph C.;Anseth, Kristi S. research published 《 Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization》, the research content is summarized as follows. There is a desire in regenerative medicine to create biofunctional materials that can control and direct cell function in a precise manner. One particular stem cell of interest, human mesenchymal stem cells (hMSCs), can function as regulators of the immunogenic response and aid in tissue regeneration and wound repair. Here, a porous hydrogel scaffold assembled from microgel subunits was used to recapitulate part of this immunomodulatory behavior. The scaffolds were used to culture a macrophage cell line, while cytokines were delivered exogenously to polarize the macrophages to either a pro-inflammatory (M1) or alternatively activated (M2a) phenotypes. Using a cytokine array, interleukin 10 (IL-10) was identified as one key anti-inflammatory factor secreted by hMSCs in pro-inflammatory conditions; it was elevated (125 ± 25 pg/mL) in pro-inflammatory conditions compared to standard medium (6 ± 10 pg/mL). The ability of hMSC laden scaffolds to reverse the M1 phenotype was then examined, even in the presence of exogenous pro-inflammatory cytokines. Co-culture of M1 and M2 macrophages with hMSCs reduced the secretion of TNFα, a pro-inflammatory cytokine even in the presence of pro-inflammatory stimulatory factors. Next, IL-10 was supplemented in the medium or tethered directly to the microgel subunits; both methods limited the secretion of pro-inflammatory cytokines of encapsulated macrophages even in pro-inflammatory conditions. Cumulatively, these results reveal the potential of biofunctional microgel-based scaffolds as acellular therapies to present anti-inflammatory cytokines and control the immunogenic cascade.
73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Formula: C18H17NO5
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem