In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 116557-46-1 as follows. category: ethers-buliding-blocks
(E)-N-(3-Bromo-2-methoxyphenyl)-3-ethoxyacrylamide (3c); A mixture of 3-bromo-o-anisidine (2c) (4.50 g, 22.3 mmoles) and pyridine (15 mL) was placed in an icebath. (E)-3-ethoxy-2-propenoyl chloride (1) (3.75 g, 27.9 mmol) was added dropwise as the solution stirred continuously for one hour. The mixture was concentrated to remove the pyridine and was transferred to a seperatory funnel where AcOEt and water were added. Concentrated HCl was added until the aqueous layer was pH 1. The water layer was extracted twice with AcOEt and the organic layers were washed with saturated NaCl (25 mL) containing 1 M HCl (2 mL). The procedure was followed by a second wash of saturated NaCl (25 mL) containing saturated NaHCO3 (5 mL). The organic layer was finally washed with saturated NaCl (25 mL). The product layer was dried and filtered through silica gel (2) using a solvent system of 1:1 followed by 2:1 hexanes-AcOEt. The product was chromatographed (2:1 1:1 hexanes:AcOEt) and recrystalized from 10:1 hexanes-AcOEt to afford light brown-orange crystals (3.35 g, 50% yield): mp 102-104 C; 1H NMR (400 MHz, CDCl3) 8.35 (dd, J=8.4, 1.6 Hz, 1H), 7.65 (d, J=12.4 Hz, 1H), 7.52 (bs, 1H), 7.21 (dd, J=8.4, 1.6 Hz, 1H), 6.98 (t, J=8.4 Hz, 1H), 5.36 (d, J=12.0 Hz, 1H), 3.97 (q, J=7.2 Hz, 2H), 3.86 (s, 3H), 1.37 (t, J=7.2 Hz, 3H).
According to the analysis of related databases, 116557-46-1, the application of this compound in the production field has become more and more popular.
Reference:
Patent; Horwitz, Jerome P.; Polin, Lisa; US2007/60612; (2007); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem