Chemistry, like all the natural sciences, Product Details of 150-78-7, begins with the direct observation of nature¡ª in this case, of matter.150-78-7, Name is 1,4-Dimethoxybenzene, SMILES is COC1=CC=C(OC)C=C1, belongs to ethers-buliding-blocks compound. In a document, author is Ye, Yanzhu, introduce the new discover.
Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO
The CuIn2O3/C nanocomposite was prepared by a simple solid-phase reduction method. The introduction of In2O3 into Cu/C to form the CuIn2O3/C nanocomposite evidently enhances the electrocatalytic activity for the selective reduction of CO2 to CO. Specifically, the CuIn2O3/C nanocomposite exhibits higher Faraday efficiency (FE = 86.7%) at -0.48 V vs. the reversible hydrogen electrode (RHE) in the electrocatalytic reduction of CO2 to CO and larger current densities (55 mA cm(2)) under a low overpotential (-1.08 V vs. RHE). These indicate its superior performance over many of the reported Cu-based catalysts [1-4]. It was also found that by rationally adjusting the applied potential, tunable syngas can be formed, which can be used to synthesize formic acid, methyl ether, methanol, synthetic fuels, or other bulk chemicals through appropriate industrial processes. Furthermore, the CuIn2O3/C nanocomposite maintains good stability in the electrocatalytic reduction of CO2. This work demonstrates a novel strategy to convert CO2 into desired products with high energy efficiency and large current density under low overpotential by the rational designing of non-precious metal catalysts. (C) 2020 Elsevier Inc. All rights reserved.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 150-78-7. Product Details of 150-78-7.