Production of secondary metabolites including a new metabolite p-methoxyphenylpropanol by the brown-rot fungus Lentinus lepideus was written by Ohta, Akira;Shimada, Mikio;Hattori, Takefumi;Higuchi, Takayoshi;Takahashi, Munezoh. And the article was included in Mokuzai Gakkaishi in 1990.Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol This article mentions the following:
The secondary metabolites which were biosynthesized from glucose by the brown-rot fungus L. lepideus grown in cultures with varying amounts of nitrogen nutrients were determined The low nitrogen concentration culture produced much greater amounts of the metabolites per nitrogen gram unit than did the high nitrogen concentration culture. A new secondary metabolite, p-methoxyphenylpropanol, was isolated from the cultures of this fungus. Incubation of the cultures with p-coumaric acid, p-methoxycinnamic acid, ferulic acid, isoferulic acid, and Me ferulate yielded a variety of phenylpropanol derivatives A possible biosynthetic route for p-methoxyphenylpropanol is discussed. Among 75 species of white-rot and brown-rot fungi examined, only the brown-rot fungus Daedalea鑱?em>dickinsii produced Me p-methoxycinnamate. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol).
3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem