Prediction of CO2 solubility in glymes and ionic liquids using modified generalized BWR EoS was written by Nishiumi, Hideo;Kodama, Daisuke. And the article was included in Fluid Phase Equilibria in 2022.Product Details of 112-49-2 This article mentions the following:
Glymes or ionic liquids are considered excellent solvents for carbon capture because they are insoluble in the gas phase during CO2 recovery. Hence, it is beneficial to predict the solubility of CO2 in these solvents to plan appropriate experiments for achieving carbon neutrality. In this study, Joback’s simple group contribution method (Joback and Reid, Chem. Eng. Commun. 57 (1987) 233-243) was used to predict the effectivity of ionic liquids or glymes toward CO2 dissolution Using this method, the fundamental and critical properties, such as critical temperature, critical pressure, critical molar volume, and acentric factor, were predicted. A binary interaction parameter, mij, which is necessary for calculating the solubility of CO2 in glyme or an ionic liquid, was also predicted using the critical volume ratio, Vc,i/Vc,CO2. Using the modified generalized BWR EoS, the value was best fitted at approx. 300 and 370 K. In general, the method proposed was effective in predicting the amount of CO2 that will dissolve in an unknown ionic liquid, which is essential for achieving carbon neutrality. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).
2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Product Details of 112-49-2
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem