Hayashi, Keisuke et al. published their research in Macromolecules (Washington, DC, United States) in 2022 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Reference of 111-77-3

Living and Alternating Cationic Copolymerization of o-Phthalaldehyde and Various Bulky Enol Ethers: Elucidation of the “Limit” of Polymerizable Monomers was written by Hayashi, Keisuke;Kanazawa, Arihiro;Aoshima, Sadahito. And the article was included in Macromolecules (Washington, DC, United States) in 2022.Reference of 111-77-3 This article mentions the following:

Cationic copolymerization of various bulky enol ethers, which have been difficult to homopolymerize and/or copolymerize, was shown to proceed when o-phthalaldehyde (OPA) was used as a comonomer. A series of enol ethers with various substituents on the β-carbon was synthesized from aliphatic aldehydes and alcs. The relationships between the structures of the enol ethers and the copolymerization behavior were systematically investigated. As a result, monomers with one or two Me and/or primary alkyl groups on the β-carbon were found to undergo alternating copolymerization with OPA. Moreover, living cationic copolymerization of enol ethers and OPA yielded alternating copolymers under appropriate polymerization conditions. To elucidate the limit of polymerizable monomers, the copolymerization of very bulky enol ethers such as β-t-butyl- or norbornenylidene-type monomers with OPA was also examined OPA was found to be copolymerizable even with such very bulky monomers, indicating that the unique reactivity of the OPA-derived propagating carbocation with small steric hindrance is the key factor for successful copolymerization In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Reference of 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Reference of 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem