Cao, Deqing published the artcileOxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries, SDS of cas: 143-24-8, the main research area is oxidative decomposition lithium carbonate carbon battery.
Lithium carbonate plays a critical role in both lithium-carbon dioxide and lithium-air batteries as the main discharge product and a product of side reactions, resp. Understanding the decomposition of lithium carbonate during electrochem. oxidation (during battery charging) is key for improving both chemistries, but the decomposition mechanisms and the role of the carbon substrate remain under debate. Here, we use an in-situ differential electrochem. mass spectrometry-gas chromatog. coupling system to quantify the gas evolution during the electrochem. oxidation of lithium carbonate on carbon substrates. Our results show that lithium carbonate decomposes to carbon dioxide and singlet oxygen mainly via an electrochem. process instead of via a chem. process in an electrolyte of lithium bis(trifluoromethanesulfonyl)imide in tetraglyme. Singlet oxygen attacks the carbon substrate and electrolyte to form both carbon dioxide and carbon monoxide-approx. 20% of the net gas evolved originates from these side reactions. Addnl., we show that cobalt(II,III) oxide, a typical oxygen evolution catalyst, stabilizes the precursor of singlet oxygen, thus inhibiting the formation of singlet oxygen and consequent side reactions.
Nature Communications published new progress about Catalysts. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, SDS of cas: 143-24-8.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem