Wei, Zhaohuan published the artcileA novel Cr2O3/MnO2-x electrode for lithium-oxygen batteries with low charge voltage and high energy efficiency, Safety of 2,5,8,11,14-Pentaoxapentadecane, the main research area is chromium trioxide manganese dioxide electrode lithium oxygen battery voltage; Cr2O3; Energy efficiency; MnO2-x; charge voltage; lithium-oxygen battery.
A high energy efficiency, low charging voltage cathode is of great significance for the development of non-aqueous lithium-oxygen batteries. Non-stoichiometric manganese dioxide (MnO2-x) and chromium trioxide (Cr2O3) are known to have good catalytic activities for the discharging and charging processes, resp. In this work, we prepared a cathode based on Cr2O3 decorated MnO2-x nanosheets via a simple anodic electrodeposition-electrostatic adsorption-calcination process. This combined fabrication process allowed the simultaneous introduction of abundant oxygen vacancies and trivalent manganese into the MnO2-x nanosheets, with a uniform load of a small amount of Cr2O3 on the surface of the MnO2-x nanosheets. Therefore, the Cr2O3 /MnO2-x electrode exhibited a high catalytic effect for both discharging and charging, while providing high energy efficiency and low charge voltage. Exptl. results show that the as-prepared Cr2O3 /MnO2-x cathode could provide a specific capacity of 6,779 mA· h· g-1 with a terminal charge voltage of 3.84 V, and energy efficiency of 78%, at a c.d. of 200 mA·g-1 . The Cr2O3 /MnO2-x electrode also showed good rate capability and cycle stability. All the results suggest that the as-prepared Cr2O3 /MnO2-x nanosheet electrode has great prospects in non-aqueous lithium-oxygen batteries.
Frontiers in Chemistry (Lausanne, Switzerland) published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Safety of 2,5,8,11,14-Pentaoxapentadecane.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem