Yen, Hao-Chi published the artcileModulation of the Hydrophilicity on Asymmetric Side Chains of Isoindigo-Based Polymers for Improving Carrier Mobility-Stretchability Properties, Related Products of ethers-buliding-blocks, the main research area is hydrophilicity isoindigo polymer carrier mobility stretchability.
To realize high-performance and intrinsically stretchable materials for field-effect transistor (FET) devices, a plethora of approaches about structure design were explored. Herein, we report a new approach to control the carrier mobility-stretchability properties of the polymers by tuning the hydrophilicity and asym. side-chain combination. A series of isoindigo-bithiophene (II2T)-based semiconducting polymers with three kinds of side chains including carbosilane side chain, semifluorinated side chain, and oligoether side chain were synthesized for investigating the structure-mobility and structure-stretchability relationships. The mol. stacking pattern and orientation of the derived polymers could be controlled by altering the hydrophilicity and asym. side-chain combination. The side chains of carbosilane and oligoether and a semifluorinated side chain could provide an order edge-on stacking, conformability and backbone aggregation, and an irregular solid-state aggregation, resp. Among them, P(Si-O) with oligoether and a carbosilane side chain exhibited an enhanced μh of 0.56 cm2 V-1 s-1, edge-on stacking, and aggregation behavior owing to the favorable intermol. interaction between the oligoether side chain and the asym. side chain to mitigate the steric hindrance. Also, P(Si-O) possessed a remarkable stretchability of (92%,⊥, 82%,‖) orthogonal μh retention under 100% strain and almost unchanged μh was observed after 1000 stretching-releasing cycles at 60% strain. The exptl. results suggested that the combination and hydrophilicity of side chain played a pivotal role in developing semiconducting polymers with a high performance and an intrinsic stretchability.
Macromolecules (Washington, DC, United States) published new progress about Crystallinity. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Related Products of ethers-buliding-blocks.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem