Descriptive analysis of dietary (poly)phenol intake in the subcohort MAX from DCH-NG: “Diet, Cancer and Health-Next Generations cohort” was written by Lanuza, Fabian;Zamora-Ros, Raul;Rostgaard-Hansen, Agnetha Linn;Tjoenneland, Anne;Landberg, Rikard;Halkjaer, Jytte;Andres-Lacueva, Cristina. And the article was included in European Journal of Nutrition.Electric Literature of C19H16O4 The following contents are mentioned in the article:
(Poly)phenols are bioactive compounds widely distributed in plant-based foods. Currently, limited data exist on the intake distribution of (poly)phenols across meals. This study aimed to estimate dietary intakes of all individual (poly)phenols and total intake per class and subclass by meal event, and to identify their main food sources in the subcohort MAX from the Diet, Cancer and Health-Next Generations cohort (DCH-NG). Dietary data were collected using three web-based 24-h dietary recalls over 1 yr. In total, 676 participants completed at least one recall. The dietary data were linked to Phenol-Explorer database using standardized procedures and an inhouse software. We categorized foods/drinks into five options of meal events selected by the participant: ′Breakfast′, Lunch, Evening, Snack, and Drink. Adjusted total (poly)phenols mean intake by meal was the highest in the drink event (563 mg/day in men and 423 mg/day in women) and the lowest in the evening event (146 mg/day in men and 137 mg/day in women). The main overall (poly)phenol class contributor was phenolic acids (55.7-79.0%), except for evening and snack events where it was flavonoids (45.5-60%). The most consumed (poly)phenol subclasses were hydroxycinnamic acids and proanthocyanidins. Nonalcoholic beverages (coffee accounted for 66.4%), cocoa products, and cereals were the main food sources of total (poly)phenols. Conclusion: This study provides data on the variability in the intake of classes and subclasses of (poly)phenols and their main food sources by meal event according to lifestyle data, age, and gender in a Danish population. This study involved multiple reactions and reactants, such as Bisdemethoxycurcumin (cas: 33171-05-0Electric Literature of C19H16O4).
Bisdemethoxycurcumin (cas: 33171-05-0) belongs to ethers. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Electric Literature of C19H16O4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem