Pipertzis, Achilleas team published research in Macromolecules (Washington, DC, United States) in 2021 | 111-90-0

HPLC of Formula: 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. HPLC of Formula: 111-90-0.

Pipertzis, Achilleas;Papamokos, George;Sachnik, Oskar;Allard, Sybille;Scherf, Ullrich;Floudas, George research published 《 Ionic Conductivity in Polyfluorene-Based Diblock Copolymers Comprising Nanodomains of a Polymerized Ionic Liquid and a Solid Polymer Electrolyte Doped with LiTFSI》, the research content is summarized as follows. Diblock copolymer electrolytes based on a π-conjugated polyfluorene (PF) backbone were synthesized comprising nanodomains of a polymerized ionic liquid (PIL) and of a solid polymer electrolyte (SPE). The former consists of a single-ion conductor based on an imidazolium alkyl chain with a [Br] counteranion grafted on the PF backbone. The latter consists of short ethylene oxide (EO) chains, grafted on the PF backbone and further doped with LiTFSI. The two nanophases support ionic conductivity, whereas the rigid PF backbone provides the required mech. stability. In the absence of LiTFSI, ionic conductivity in the PIL nanophase is low and exhibits an Arrhenius temperature dependence. LiTFSI substitution enhances ionic conductivity by about 3 orders of magnitude and further changes to a Vogel-Fulcher-Tammann temperature dependence. However, at ambient temperature, ionic conductivity is lower than in the corresponding PEO/LiTFSI electrolytes. X-ray studies and thermal anal. revealed that the conjugated backbone imparts liquid-crystalline order that can be fine-tuned through the EO side group length. Ionic conductivity measurements performed as a function of pressure identified local jumps of [Li]+ and [Br] ions in the resp. SPE/PIL nanophases as responsible for the ionic conductivity Between the two ions, it is [Li]+ that has the major contribution to the ionic conductivity The current results provide designing rules for new copolymers that comprise two different ionic nanodomains (PIL and SPE) and a conjugated backbone that can further support electronic conduction.

HPLC of Formula: 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem