Axially- and Meso-Substituted Aza-Crown-Ether-Incorporated BIII Subporphyrins: Control of Electron-Donating Ability by Metal Ion Chelation was written by Kise, Koki;Lee, Yu Jin;Tanaka, Takayuki;Kim, Dongho;Osuka, Atsuhiro. And the article was included in European Journal of Inorganic Chemistry in 2021.Computed Properties of C10H21NO4 This article mentions the following:
A series of subporphyrin-based fluorescent probes bearing 1-aza-15-crown-5 or 1-aza-18-crown-6 moieties at the meso or axial positions were prepared by Pd-catalyzed Buchwald-Hartwig amination reaction of the corresponding bromosubporphyrins. Both types of aza-crown-ether-incorporated subporphyrins were fluorescent in solution and exhibited cation-dependent absorption and fluorescence changes. In fluorescence titration experiments, opposite responses were observed for the two types of subporphyrins. Namely, fluorescence quenching occurred for the meso-substituted subporphyrins while fluorescence enhancement was observed for the axially-substituted subporphyrins. These results demonstrate the advantage of subporphyrins being viable to serve as turn-off-type or turn-on-type fluorescence probes, depending upon substitution pattern. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Computed Properties of C10H21NO4).
1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Computed Properties of C10H21NO4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem