Structure-Activity Studies for 浼?Amino-3-hydroxy-5-methyl-4-isoxazolepropanoic Acid Receptors: Acidic Hydroxyphenylalanines was written by Hill, Ronald A.;Wallace, Lane J.;Miller, Duane D.;Weinstein, David M.;Shams, Gamal;Tai, Henry;Layer, Richard T.;Willins, David;Uretsky, Norman J.;Danthi, Satyavijayan Narasimhan. And the article was included in Journal of Medicinal Chemistry in 1997.Product Details of 5367-32-8 This article mentions the following:
Antagonists of 浼?amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-
3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Product Details of 5367-32-8
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem