Ferro, Noel et al. published their research in Journal of Chemical Information and Modeling in 2006 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid

Coulomb and Overlap Self-Similarities: A Comparative Selectivity Analysis of Structure-Function Relationships for Auxin-like Molecules was written by Ferro, Noel;Gallegos, Ana;Bultinck, Patrick;Jacobsen, Hans-Joerg;Carbo-Dorca, Ramon;Reinard, Thomas. And the article was included in Journal of Chemical Information and Modeling in 2006.Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid This article mentions the following:

Auxins are defined mainly by a set of physiol. actions, but the structure-effect relationship still is based on chem. intuition. Currently a well-defined auxin mol. structure is not available. The existence of different auxin binding proteins and mechanisms of auxin action, the wide diversity of the auxin mols., and the pleiotropic effects of auxin imply a completely different mechanism as described for the animal hormone concept. Here, we present a computational approach dealing with semiempirical optimizations of the auxin mols. themselves, which represent a number of about 250 different chem. structures. Our approach uses mol. quantum similarity measures and addnl. quantum variables for the anal. of auxin-like mols. The finding of similarities in mols. by focusing basically on their electron structure results in new insights in the relationship of the different auxin groups. Addnl. statistical anal. allows the identification of relationships between similarity groups and their biol. activity, resp. It is postulated that the auxin-like mol. recognition depends more on specific mol. assembling states than on a specific ring system or side chain. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem