Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system was written by Yang, Jian;Hong, Chen;Li, Zaixing;Xing, Yi;Zhao, Xiumei. And the article was included in Waste Management (Oxford, United Kingdom) in 2021.Safety of 2-(2-Methoxyethoxy)ethanol This article mentions the following:
In this study, antibiotic residue was converted into bio-oil by hydrothermal liquefaction (HTL) in subcritical or supercritical ethanol/water system. The bio-oil yield increased firstly as the ethanol/water ratio < 1:1, reaction temperature < 280°C, residence time < 150 min, and thereafter decreased. However, the bio-oil yield continuously decreased with a plunge at 15% as the solid/liquid ratio increased. The change tendency of O/C, H/C and N/C of bio-oil indicated different reaction mechanism of HTL. The addition of ethanol significantly promoted the esterification reaction, leading to increase of aliphatics content of bio-oil, especially branched long-chain aliphatics. Comprehensively considering the bio-oil yield, production cost, higher heating value (HHV) and chem. composition, the optimal process parameters of HTL were obtained as follows: ethanol/water ratio of 1:1, reaction temperature of 280°C, residence time of 150 min, and solid/liquid ratio of 15%, under which the bio-oil yield was 33.29 wt%, HHV was 33.47 MJ/kg, and the main compositions of bio-oil were esters (>48%). In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Safety of 2-(2-Methoxyethoxy)ethanol).
2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of 2-(2-Methoxyethoxy)ethanol
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem