Photosynthetic Bioelectronic Sensors for Touch Perception, UV-Detection, and Nanopower Generation: Toward Self-Powered E-Skins was written by Ravi, Sai Kishore;Wu, Tingfeng;Udayagiri, Vishnu Saran;Vu, Xuan Minh;Wang, Yanan;Jones, Michael R.;Tan, Swee Ching. And the article was included in Advanced Materials (Weinheim, Germany) in 2018.Synthetic Route of C9H10O4 This article mentions the following:
Energy self-sufficiency is an inspirational design feature of biol. systems that fulfills sensory functions. Plants such as the “touch-me-not” and “Venus flytrap” not only sustain life by photosynthesis, but also execute specialized sensory responses to touch. Photosynthesis enables these organisms to sustainably harvest and expend energy, powering their sensory abilities. Photosynthesis therefore provides a promising model for self-powered sensory devices like electronic skins (e-skins). While the natural sensory abilities of human skin have been emulated in man-made materials for advanced prosthetics and soft-robotics, no previous e-skin has incorporated phototransduction and photosensory functions that could extend the sensory abilities of human skin. A proof-of-concept bioelectronic device integrated with natural photosynthetic pigment-proteins is presented that shows the ability to sense not only touch stimuli (down to 3000 Pa), but also low-intensity UV radiation (down to 0.01 mW cm-2) and generate an elec. power of ≈260 nW cm-2. The scalability of this device is demonstrated through the fabrication of flexible, multipixel, bioelectronic sensors capable of touch registration and tracking. The polysensory abilities, energy self-sufficiency, and addnl. nanopower generation exhibited by this bioelectronic system make it particularly promising for applications like smart e-skins and wearable sensors, where the photogenerated power can enable remote data transmission. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Synthetic Route of C9H10O4).
2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Synthetic Route of C9H10O4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem