Few-nm-sized, phase-pure Au5Sn intermetallic nanoparticles: synthesis and characterization was written by Osugi, Satoshi;Takano, Shinjiro;Masuda, Shinya;Harano, Koji;Tsukuda, Tatsuya. And the article was included in Dalton Transactions in 2021.Synthetic Route of C8H18O4 This article mentions the following:
Nanoparticles of intermetallic compounds have attracted much interest because they can exhibit novel electronic and catalytic properties due to their specific crystal structure, ordered at. arrangement, and quantum effect. Here, gold-tin (AuSn) bimetallic nanoparticles with various mixing ratios were prepared by a co-reduction method using various protective agents (e.g., polymer, amine, phosphine, carboxylic acid, and thiol). Powder X-ray diffractometry and transmission electron microscopy revealed that few-nm-sized, phase-pure Au5Sn intermetallic nanoparticles (IMNPs) were successfully synthesized when Au3+ and Sn2+ precursors with a ratio of 6 : 4 were co-reduced in the presence of oleylamine. The Au5Sn IMNPs thus prepared did not exhibit localized surface plasmon resonance, in contrast to pure Au nanoparticles of comparable sizes. This suggests that interband transition dominates the optical response due to an increase in the d. of states near the Fermi level by introducing Sn. The Au5Sn IMNPs supported on mesoporous silica (SBA-15) catalyzed the aerobic oxidation reaction of indanol. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Synthetic Route of C8H18O4).
2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Synthetic Route of C8H18O4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem