Mo-Based Oxidizers as Powerful Tools for the Synthesis of Thia- and Selenaheterocycles was written by Franzmann, Peter;Beil, Sebastian B.;Schollmeyer, Dieter;Waldvogel, Siegfried R.. And the article was included in Chemistry – A European Journal in 2019.Reference of 3929-47-3 This article mentions the following:
A highly efficient synthetic protocol for the synthesis of thia- and selenaheterocycles has been developed. By employing a MoCl5-mediated intramol. dehydrogenative coupling reaction, a broad variety of structural motifs was isolated in yields up to 94 % [e.g., bis(2-(3,4-dimethoxyphenyl)ethyl) disulfide → 4,5-dimethoxybenzothiophene (65 %) in the presence of MoCl5 + TiCl4 (2 equiv)]. The electrophilic key transformation is tolerated by several labile moieties like halides and tertiary alkyl groups. Due to the use of disulfide or diselenide precursors, a high atom efficiency was achieved. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Reference of 3929-47-3).
3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Reference of 3929-47-3
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem