Choi, Chi et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2002 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 3929-47-3

Use of parallel-synthesis combinatorial libraries for rapid identification of potent FKBP12 inhibitors was written by Choi, Chi;Li, Jia-He;Vaal, Mark;Thomas, Christine;Limburg, David;Wu, Yong-Qian;Chen, Yi;Soni, Raj;Scott, Chad;Ross, Douglas T.;Guo, Hong;Howorth, Pamela;Valentine, Heather;Liang, Shi;Spicer, Dawn;Fuller, Mike;Steiner, Joseph;Hamilton, Gregory S.. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2002.Recommanded Product: 3929-47-3 This article mentions the following:

Using simple, inexpensive equipment, we have used solution-phase parallel synthesis to rapidly prepare hundreds of sulfonamide- and urea-containing FKBP inhibitors, resulting in rapid identification of extremely potent compounds in these series. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Recommanded Product: 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem