Mandai, Toshihiko et al. published their research in ACS Applied Materials & Interfaces in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.HPLC of Formula: 112-49-2

Critical Issues of Fluorinated Alkoxyborate-Based Electrolytes in Magnesium Battery Applications was written by Mandai, Toshihiko. And the article was included in ACS Applied Materials & Interfaces in 2020.HPLC of Formula: 112-49-2 This article mentions the following:

The development of noncorrosive but highly efficient electrolytes has been a long-standing challenge in magnesium rechargeable battery (MRB) research fields. As fluorinated alkoxyborate-based electrolytes have overcome serious problems associated with conventional electrolytes, they are regarded as promising for practical MRB applications. An electrolyte containing representative magnesium fluorinated alkoxyborate Mg[B(HFIP)4]2 ([B(HFIP)4]: tetrakis(hexafluoroisopropoxy) borate) was prepared through general synthetic routes using Mg(BH4)2; however, it shows poor electrochem. magnesium deposition/dissolution behavior. Herein, we report an alternative synthetic route of highly reactive Mg[B(HFIP)4]2 and several critical issues associated with the use of Mg[B(HFIP)4]2/glyme electrolytes in MRBs. The cycling performance of the electrolytes as well as the synthetic reproducibility of the salt was significantly improved upon adopting a transmetalation reaction between certain magnesium and boron compounds for the salt preparation Despite the outstanding electrochem. activity of Mg[B(HFIP)4]2/glyme, the electrolytes were unstable with the magnesium metal. The remarkably high dissociativity of Mg[B(HFIP)4]2 in glyme solutions and the resulting enhanced induction interaction of Mg2+ with coordinated glymes make the solutions reductively unstable. Surface passivation by [TFSA]-based electrolytes (TFSA: bis(trifluoromethanesulfonyl)amide) effectively suppressed the decomposition of Mg[B(HFIP)4]2/glyme electrolytes. This passivation simultaneously caused a large overpotential for electrochem. cycling. The short-circuiting of the cells upon repeated deposition/dissolution cycling is rather problematic. Here, the findings disclose the issues of fluorinated alkoxyborate-based electrolyte solutions that should be resolved for practical MRB materialization. We also emphasize the importance of systematic strategies in manipulating the electrolytes and interfaces as well as base magnesium metal based on each appropriate approach. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2HPLC of Formula: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.HPLC of Formula: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem