Song, Mengyuan published the artcileTetramethylpyrazine: an electrolyte additive for high capacity and energy efficiency lithium-oxygen batteries, Application of 2,5,8,11,14-Pentaoxapentadecane, the main research area is tetramethylpyrazine electrolyte lithium oxygen battery energy efficiency.
Lithium-oxygen batteries have attracted great attention in recent years owing to their extremely high theor. energy d., however, factors such as low actual capacity and poor rate performance hinder the practical application of lithium-oxygen batteries. In this work, a novel electrolyte additive, tetramethylpyrazine (TMP), is introduced into an electrolyte system to enhance the electrochem. performance of the lithium-oxygen batteries. TMP does not undergo its own redox reaction within the charge-discharge voltage range, which will not affect the electrochem. stability of the electrolyte. The results show that the addition of TMP can increase the reduction current of oxygen, which will promote the ORR process, and with an optimal TMP content (50 mM), the cell shows a high discharge capacity of 5712.3 mA h g-1 at 0.1 mA cm-2. And its rate capability is almost doubled compared with the system without TMP additive at a large c.d. of 1 mA cm-2. Further anal. by SEM and XRD reveals that the addition of TMP can reduce the formation of byproducts and promote the solution growth of large-size Li2O2 particles to achieve a large discharge capacity. This approach could provide a new idea for improving the electrochem. performance of lithium-oxygen batteries.
RSC Advances published new progress about Basicity. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem