Guan, Qingqing published the artcileBiodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application, Quality Control of 16332-06-2, the publication is Applied Energy (2016), 380-386, database is CAplus.
Finding a more efficient method for the transesterification of triglycerides to biodiesel fuel (BD) is important in today’s world. In this study, transesterification of trilaurin was carried out in a solution containing 4 wt% of the Lewis acid AlCl3 dissolved in a cosolvent of ethanol and 5 MPa CO2. A conversion rate of over 90% was achieved within 1 h at the low temperature of 180°C. The process indicates a co-catalytic effect of the Lewis acid and CO2. We postulate several key steps for the mechanism. First, the CO2-ethanol mixture enhances the hydrogen bonding, increasing the concentration of C2H5O·. Second AlCl3 attacks the oxygen of C-O-C to weaken the bonds to form carbonyl carbon OR1, which is then easily attacked by C2H5O· to give the transesterified product (C2H4COOR1). Third, AlCl3 is finally replaced by H to form glycerin (GL) and intermediates, such as unmethyl esterified compounds (uME). AlCl3 was used as a flocculant and catalyst for converting waste cooking oil (WCO) to BD. The process achieved 97% free fatty acid (FFA) conversion at 120 °C in 90 min, making it one of the most efficient systems available for WCO recovery. AlCl3 was also successfully applied to microalgae, signaling the potential for a process that combines harvesting, lipid extraction, and transesterification, leading to fully integrated, microalgae-based BD production
Applied Energy published new progress about 16332-06-2. 16332-06-2 belongs to ethers-buliding-blocks, auxiliary class Amine,Aliphatic hydrocarbon chain,Amide,Ether, name is 2-Methoxyacetamide, and the molecular formula is C3H7NO2, Quality Control of 16332-06-2.
Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem