Wu, Shengde published the artcileFramework for Identifying Chemicals with Structural Features Associated with the Potential to Act as Developmental or Reproductive Toxicants, Category: ethers-buliding-blocks, the publication is Chemical Research in Toxicology (2013), 26(12), 1840-1861, database is CAplus and MEDLINE.
Developmental and reproductive toxicity (DART) end points are important hazard end points that need to be addressed in the risk assessment of chems. to determine whether or not they are the critical effects in the overall risk assessment. These hazard end points are difficult to predict using current in silico tools because of the diversity of mechanisms of action that elicit DART effects and the potential for narrow windows of vulnerability. DART end points have been projected to consume the majority of animals used for compliance with REACH; thus, addnl. nonanimal predictive tools are urgently needed. This article presents an empirically based decision tree for determining whether or not a chem. has receptor-binding properties and structural features that are consistent with chem. structures known to have toxicity for DART end points. The decision tree is based on a detailed review of 716 chems. (664 pos., 16 neg., and 36 with insufficient data) that have DART end-point data and are grouped into defined receptor binding and chem. domains. When tested against a group of chems. not included in the training set, the decision tree is shown to identify a high percentage of chems. with known DART effects. It is proposed that this decision tree could be used both as a component of a screening system to identify chems. of potential concern and as a component of weight-of-evidence decisions based on structure-activity relationships (SAR) to fill data gaps without generating addnl. test data. In addition, the chem. groupings generated could be used as a starting point for the development of hypotheses for in vitro testing to elucidate mode of action and ultimately in the development of refined SAR principles for DART that incorporate mode of action (adverse outcome pathways).
Chemical Research in Toxicology published new progress about 1589-47-5. 1589-47-5 belongs to ethers-buliding-blocks, auxiliary class Aliphatic hydrocarbon chain,Alcohol,Ether, name is 2-Methoxypropan-1-ol, and the molecular formula is C13H9FO, Category: ethers-buliding-blocks.
Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem