Akherati, Ali published the artcileDilution and photooxidation driven processes explain the evolution of organic aerosol in wildfire plumes, Formula: C8H10O2, the publication is Environmental Science: Atmospheres, database is CAplus.
Wildfires are an important atm. source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochem. processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chem., thermodn. properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochem. production of SOA are likely to explain the observed evolution in OA mass with phys. age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chem. transformation within the first hour after emission is driven by higher-than-ambient OH concentrations (3 x 106-107 mols. per cm3) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<106 mols. per cm3) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with phys. age.
Environmental Science: Atmospheres published new progress about 91-16-7. 91-16-7 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether,Inhibitor,Inhibitor,Inhibitor, name is 1,2-Dimethoxybenzene, and the molecular formula is C8H10O2, Formula: C8H10O2.
Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem