Deficit irrigation differently affects aroma composition in berries of Vitis vinifera L. (cvs Sangiovese and Merlot) grafted on two rootstocks was written by Palai, G.;Caruso, G.;Gucci, R.;D′Onofrio, C.. And the article was included in Australian Journal of Grape and Wine Research in 2022.Application In Synthesis of 4-Hydroxy-3-methoxyphenethanol The following contents are mentioned in the article:
Water deficit modifies the concentration of the aroma compounds of grape berries, but little information is available on the effect of deficits applied at different phenol. stages. We evaluated the effect of deficit irrigation on glycosylated volatile organic compounds (VOCs) responsible for the aroma of berries of Sangiovese and Merlot cultivars grafted on 1103P or SO4 rootstocks. Vines were subjected to either pre- or post-veraison water stress, and berry composition compared against that of fruit of fully irrigated vines. At harvest, a higher concentration of glycosylated VOCs was measured in berries from vines stressed pre-veraison, but while it increased as water deficit increased in Sangiovese, this occurred only at a low or moderate level of stress in Merlot. Post-veraison water stress had a neg. or negligible effect on the concentration of glycosylated VOCs in berries at harvest. The rootstock affected the concentration of glycosylated VOCs, particularly in vines stressed pre-veraison, with higher glycosylated VOCs observed for SO4 grafted vines than for 1103P grafted vines. Pre-veraison water deficit enhanced the concentration of berry glycosylated VOCs, while post-veraison deficit did not. The rootstock-scion interaction might amplify the irrigation effect on berry glycosylated VOCs. Modifying the timing and volume of irrigation might allow management of berry flavor for improved fruit and wine composition Irrigation protocols should be tailored for specific cultivar-rootstock combinations. This study involved multiple reactions and reactants, such as 4-Hydroxy-3-methoxyphenethanol (cas: 2380-78-1Application In Synthesis of 4-Hydroxy-3-methoxyphenethanol).
4-Hydroxy-3-methoxyphenethanol (cas: 2380-78-1) belongs to ethers. Volatile esters with characteristic odours are used in synthetic flavours, perfumes, and cosmetics. Certain volatile esters are used as solvents for lacquers, paints, and varnishes. Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials.Application In Synthesis of 4-Hydroxy-3-methoxyphenethanol
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem