Mirchi, Vahideh et al. published their research in Fuel in 2015 | CAS: 112-59-4

2-(2-(Hexyloxy)ethoxy)ethanol (cas: 112-59-4) belongs to ethers. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Polyesters are important plastics, with monomers linked by ester moieties. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.Synthetic Route of C10H22O3

Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions was written by Mirchi, Vahideh;Saraji, Soheil;Goual, Lamia;Piri, Mohammad. And the article was included in Fuel in 2015.Synthetic Route of C10H22O3 The following contents are mentioned in the article:

The production of oil from shale formations often requires the utilization of chem. surfactants as additives in fracturing fluids in order to change the characteristics of oil/brine interfaces and/or induce wettability alteration at the shale surface. Although the effect of some surfactants on the interfacial properties of shale oil systems has been investigated in the past, the limited data available in the literature were mainly obtained at ambient conditions and thus may not be representative of fluid-rock interactions at actual reservoir conditions. In this study, a new framework is proposed to investigate the effect of surfactants on fundamental parameters governing fluid displacement in two brine/oil/shale systems (A and B) at reservoir conditions. The critical micelle concentration (CMC) of anionic and nonionic surfactants in brine and their adsorption propensity on shale was first determined by UV-visible spectroscopy and pendant drop method. Rising/captive bubble technique was validated for ultra-low interfacial tension systems then utilized to measure dynamic interfacial tensions and contact angles in the presence of surfactants in Systems A and B at ambient and reservoir conditions. The effects of pressure and temperature, surfactant concentration, and brine chem. on the above-mentioned parameters were investigated in a systematic manner. The results revealed that nonionic surfactants adsorb much less on shales than anionic surfactants. As a result, shale samples used in this study remained strongly water-wet with the nonionic surfactant regardless of surfactant concentration and brine chem. The lowest work of adhesion was obtained right above the CMC, which represents the optimum surfactant concentration Moreover the use of tap water instead of reservoir brine in System B was preferred due to a further reduction in IFT. This study involved multiple reactions and reactants, such as 2-(2-(Hexyloxy)ethoxy)ethanol (cas: 112-59-4Synthetic Route of C10H22O3).

2-(2-(Hexyloxy)ethoxy)ethanol (cas: 112-59-4) belongs to ethers. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Polyesters are important plastics, with monomers linked by ester moieties. Acyl chlorides and acid anhydrides alcoholysis is another way to produce esters. Acyl chlorides and acid anhydrides react with alcohols to produce esters. Anydrous conditions are recommended since both acyl chlorides and acid anhydrides react with water.Synthetic Route of C10H22O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem