On July 16, 2021, Thorwart, Thaddaus; Roth, Daniel; Greb, Lutz published an article.Quality Control of 1,2-Dimethoxybenzene The title of the article was Bis(pertrifluoromethylcatecholato)silane: Extreme Lewis Acidity Broadens the Catalytic Portfolio of Silicon. And the article contained the following:
Given its earth abundance, Si is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. The novel per(trifluoromethyl)catechol, H2catCF3, and adducts of its Si complex Si(catCF3)2 (1) are described. According to the computed F- ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane. The experimental process involved the reaction of 1,2-Dimethoxybenzene(cas: 91-16-7).Quality Control of 1,2-Dimethoxybenzene
The Article related to silane fluoromethylcatecholato preparation lewis acidity deoxygenation metathesis catalyst, crystal structure silicon trifluoromethylcatechol complex, lewis superacids, catechol, deoxygenation, homogeneous catalysis, silicon and other aspects.Quality Control of 1,2-Dimethoxybenzene
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem