Li, Yulei team published research in Journal of the American Chemical Society in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Related Products of 73724-45-5

Ethers do have nonbonding electron pairs on their oxygen atoms, 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Related Products of 73724-45-5.

Li, Yulei;Heng, Jie;Sun, Demeng;Zhang, Baochang;Zhang, Xin;Zheng, Yupeng;Shi, Wei-Wei;Wang, Tong-Yue;Li, Jiu-Yi;Sun, Xiaoou;Liu, Xiangyu;Zheng, Ji-Shen;Kobilka, Brian K.;Liu, Lei research published ã€?Chemical synthesis of a full-Length G-protein-coupled receptor β2-adrenergic receptor with defined modification patterns at the C-terminusã€? the research content is summarized as follows. The β2-adrenergic receptor (β2AR) is a G-protein-coupled receptor (GPCR) that responds to the hormone adrenaline and is an important drug target in the context of respiratory diseases, including asthma. β2AR Function can be regulated by post-translational modifications such as phosphorylation and ubiquitination at the C-terminus, but access to the full-length β2AR with well-defined and homogeneous modification patterns critical for biochem. and biophys. studies remains challenging. Here, we report a practical synthesis of differentially modified, full-length β2AR based on a combined native chem. ligation (NCL) and sortase ligation strategy. An array of homogeneous samples of full-length β2ARs with distinct modification patterns, including a full-length β2AR bearing both monoubiquitination and octaphosphorylation modifications, were successfully prepared for the first time. Using these homogeneously modified full-length β2AR receptors, we found that different phosphorylation patterns mediate different interactions with β-arrestin1 as reflected in different agonist binding affinities. Our experiments also indicated that ubiquitination can further modulate interactions between β2AR and β-arrestin1. Access to full-length β2AR with well-defined and homogeneous modification patterns at the C-terminus opens a door to further in-depth mechanistic studies into the structure and dynamics of β2AR complexes with downstream transducer proteins, including G proteins, arrestins, and GPCR kinases.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Related Products of 73724-45-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem