Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Application of C18H17NO5.
Khan, Sadiq Noor;Shaheen, Farzana;Aleem, Umair;Sheikh, Sumbla;Tamfu, Alfred Ngenge;Ashraf, Sajda;Ul-Haq, Zaheer;Ullah, Saeed;Wahab, Atia-tul-;Choudhary, M. Iqbal;Jahan, Humera research published 《 Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation》, the research content is summarized as follows. 18β-Glycyrrhetinic acid (18β-GA) is known for several biol. activities, and has been the focus of extensive research for the development of therapeutic agents. In the current study, 18β-GA-peptide conjugates 2-11 were evaluated for their in vitro α-glucosidase inhibitory and antiglycation activities. Structure-activity relationship (SAR) established and mol. interactions of active bioconjugates with the enzyme′s binding sites were predicted through mol. modeling approach. In tripeptide moiety of conjugates 2-11, peptide residue at position 1 was found to have a significant role on α-glucosidase inhibition. The most active 18β-GA-peptide conjugates 5 (18β-GA-Cys1-Tyr2-Gly3), and 8 (18β-GA-Pro1-Tyr2-Gly3) exhibited several-fold potent α-glucosidase inhibition (IC50 values 20-28 ΜM), as compared to standard drug acarbose (IC50 = 875.8 ± 2.10 ΜM). Kinetic studies of potent compounds, 4-8 revealed that conjugate 5 exhibits competitive-type of inhibition, while conjugates 6-8 showed a non-competitive type of inhibition. The simulation studies also supported the kinetic results that conjugate 5 (18β-GA-Cys1-Tyr2-Gly3) inhibits the α-glucosidase enzyme by blocking its substrate binding site. AGEs-induced NO• inhibitors play an important role in controlling the inflammation associated with diabetes mellitus. The peptide conjugates 2-11 were also evaluated in vitro for AGEs-induced NO• inhibition using RAW 264.7 macrophage cell line. Our data revealed that conjugates 7-10 were the more potent AGEs-induced NO• inhibitors, comparable to standards rutin, and PDTC. The peptide conjugate 5 (a competitive inhibitor of α-glucosidase) also exhibited a strong inhibitory activity against AGEs-induced NO• production Furthermore, peptide conjugates 2-11 were found non-cytotoxic to mouse fibroblast NIH-3T3, and murine macrophages RAW 264.7 cell lines. In conclusion, our data demonstrates that besides possessing strong α-glucosidase inhibition, the newly synthesized peptide conjugates also alleviated the AGEs-induced NO• production in RAW macrophages. Dual inhibition of α-glucosidase enzyme, and AGEs-induced NO• production by 18β-GA-peptide conjugates qualify them for further research in anti-diabetic drug discovery.
73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Application of C18H17NO5
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem