In 2022,Indris, Sylvio; Bredow, Thomas; Schwarz, Bjoern; Eichhoefer, Andreas published an article in Inorganic Chemistry. The title of the article was 《Paramagnetic 7Li NMR Shifts and Magnetic Properties of Divalent Transition Metal Silylamide Ate Complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co)》.HPLC of Formula: 33100-27-5 The author mentioned the following in the article:
7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally neg. charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related “”ion-separated”” complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via μ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, resp., whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by d.-functional theory calculations The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1. In the experimental materials used by the author, we found 1,4,7,10,13-Pentaoxacyclopentadecane(cas: 33100-27-5HPLC of Formula: 33100-27-5)
1,4,7,10,13-Pentaoxacyclopentadecane(cas: 33100-27-5) is a member of crown ether Ligands. Crown-ethers are macrocyclic polyethers capable of forming host-guest complexes, especially with inorganic and organic cations. Crown-ethers can incorporate protonated primary amine compounds by formation of ion-dipole bonds with the oxygen atoms of the chiral selector. Crown-ethers have been widely used for the separation of several pharmaceuticals both in aqueous and non-aqueous media. HPLC of Formula: 33100-27-5
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem