Product Details of 139115-91-6In 2021 ,《Reversible covalent locking of a supramolecular hydrogel via UV-controlled anthracene dimerization》 was published in Polymer Chemistry. The article was written by Hou, Zhanyao; Nau, Werner M.; Hoogenboom, Richard. The article contains the following contents:
Supramol. hydrogels gained significant attention as shear-thinning, self-healing materials. However, the introduction of non-covalent crosslinks inherently decreases the strength and stability of the hydrogel. In this work, we developed a novel supramol. hydrogel that undergoes a reversible transformation to the corresponding covalently crosslinked hydrogel upon UV-irradiation The supramol. hydrogel was developed based on the ternary host-guest interaction of two anthracene moieties and one large macrocyclic host. Anthracene functionalized poly(N-acryloylmorpholine)s were synthesized by post-polymerization modification of a copolymer consisting of N-acryloylmorpholine and an activated ester comonomer, whereby two different polymers were prepared having either neutral anthracene side-chains or carrying a pos. charge next to the anthracene to enhance the interaction with the host. The binding affinity of the anthracene side chains with and without an addnl. cationic charge were studied with two macrocyclic hosts, namely cucurbit[8]uril and γ-cyclodextrin (γ-CD) by UV-Vis titration revealing a markedly stronger binding in the presence of the cationic charge due to addnl. ion-dipole one of the macrocyclic hosts, cucurbit[8]uril. Subsequently, the effect of the binding affinity on the hydrogelation was investigated, indicating that the stronger binding affinity facilitated the hydrogel formation at lower concentration Finally, the reversible transformation of the supramol. hydrogel to a chem. hydrogel by anthracene dimerization was studied by the UV irradiation of the hydrogel at 365 nm for covalent crosslinking or at 254 nm for decrosslinking. It could be demonstrated that the dynamic nature of the hydrogel, that is responsible for the shear-thinning behavior, was indeed lost upon UV-irradiation indicative of the formation of a covalently crosslinked hydrogel. The capabilities of the formed supramol. hydrogel that is easily processable and able to reversibly convert to a chem. hydrogel, provides potential applications in applying mech. robust covalently crosslinked hydrogels in complex shapes and difficult to reach locations making use of the dynamic nature of the supramol. crosslinks. In the experiment, the researchers used tert-Butyl (2-(2-hydroxyethoxy)ethyl)carbamate(cas: 139115-91-6Product Details of 139115-91-6)
tert-Butyl (2-(2-hydroxyethoxy)ethyl)carbamate(cas: 139115-91-6) belongs to ethers.Oxygen is more electronegative than carbon, thus the alpha hydrogens of ethers are more acidic than those of simple hydrocarbons. They are far less acidic than alpha hydrogens of carbonyl groups (such as in ketones or aldehydes), however. Product Details of 139115-91-6
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem