Cas: 2657-87-6 | Zhou, Haoranpublished an article in 2015

3-(4-Aminophenoxy)aniline is one of ethers-buliding-blocks. Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. Synthetic Route of C12H12N2OEthers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds.

Zhou, Haoran;Yu, Weimiao;Qu, Chunyan;Liu, Changwei;Wang, Dezhi published 《Facile one-step synthesis of PI/Fe3O4 composite microspheres from poly(amic acid) triethylamine salts and Fe(III) ion》 in 2015. The article was appeared in 《Journal of Materials Science: Materials in Electronics》. They have made some progress in their research.Synthetic Route of C12H12N2O The article mentions the following:

Polyimide/magnetite composite microspheres were successfully prepared from poly(amic acid) triethylamine salts and Fe(III) ion via a simple one-step solvothermal process. The formation mechanism of the composite microspheres was explored. The morphol. and the structure of the samples were characterized. It was found that polyimide has successfully coated on the surface of the magnetite microspheres and penetrated throughout the crystals via an assembly process. And the magnetic and thermal properties were measured, the results showing that composite microspheres have excellent thermal stabilities and the saturation magnetization is 35.29 emu/g with PI content of 60 wt%.3-(4-Aminophenoxy)aniline (cas: 2657-87-6) were involved in the experimental procedure.

3-(4-Aminophenoxy)aniline is one of ethers-buliding-blocks. Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. Synthetic Route of C12H12N2OEthers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds.

Reference:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem