Cas: 2235-01-0 | Thomas, Bejoy et al. made new progress in 2005

Dimethoxydiphenylmethane is one of ethers-buliding-blocks. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. Quality Control of Dimethoxydiphenylmethane The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.

Thomas, Bejoy;Prathapan, Sreedharan;Sugunan, Sankaran published 《Synthesis of dimethyl acetal of ketones: design of solid acid catalysts for one-pot acetalization reaction》. The research results were published in《Microporous and Mesoporous Materials》 in 2005.Quality Control of Dimethoxydiphenylmethane The article conveys some information:

The synthesis of di-Me acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The mol. size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg-Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg-Y zeolites seem to work well in shifting the equilibrium to the product side. To complete the study, the researchers used Dimethoxydiphenylmethane (cas: 2235-01-0) .

Dimethoxydiphenylmethane is one of ethers-buliding-blocks. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. Quality Control of Dimethoxydiphenylmethane The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.

Reference:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem