Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Quality Control of 73724-45-5.
Ackun-Farmmer, Marian A.;Soto, Celia A.;Lesch, Maggie L.;Byun, Daniel;Yang, Lila;Calvi, Laura M.;Benoit, Danielle S. W.;Frisch, Benjamin J. research published 《 Reduction of leukemic burden via bone-targeted nanoparticle delivery of an inhibitor of C-chemokine (C-C motif) ligand 3 (CCL3) signaling》, the research content is summarized as follows. Leukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation. Leukemic cells derived from CCL3-/- mice were shown to minimally engraft in a normal BMME, thereby demonstrating that CCL3 signaling was necessary to recapitulate bcCML disease. Further anal. showed disruption in hematopoiesis within the BMME in the bcCML model. To rescue the altered BMME, therapeutic inhibition of CCL3 signaling was investigated using bone-targeted nanoparticles (NP) to deliver Maraviroc, an inhibitor of C-C chemokine receptor type 5 (CCR5), a CCL3 receptor. NP-mediated Maraviroc delivery partially restored the BMME, significantly reduced leukemic burden, and improved survival. Overall, our results demonstrate that inhibiting CCL3 via CCR5 antagonism is a potential therapeutic approach to restore normal hematopoiesis as well as reduce leukemic burden within the BMME.
73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Quality Control of 73724-45-5
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem