Chemical Properties and Facts of Diphenyl oxide

Category: ethers-buliding-blocks. About Diphenyl oxide, If you have any questions, you can contact Pelse, I; Hernandez, JL; Engmann, S; Herzing, AA; Richter, LJ; Reynolds, JR or concate me.

An article Cosolvent Effects When Blade-Coating a Low-Solubility Conjugated Polymer for Bulk Heterojunction Organic Photovoltaics WOS:000542925300064 published article about TO-ROLL FABRICATION; LOW-BANDGAP POLYMER; X-RAY-SCATTERING; SOLAR-CELLS; PHASE-SEPARATION; HIGH-EFFICIENCY; DOMAIN PURITY; FIBRIL WIDTH; BLEND FILMS; MORPHOLOGY in [Pelse, Ian; Hernandez, Jeff L.; Reynolds, John R.] Georgia Inst Technol, Sch Chem & Biochem, Sch Mat Sci & Engn, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA; [Engmann, Sebastian] NIST, Nanoscale Device Characterizat Div, Gaithersburg, MD 20899 USA; [Herzing, Andrew A.; Richter, Lee J.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA in 2020.0, Cited 50.0. Category: ethers-buliding-blocks. The Name is Diphenyl oxide. Through research, I have a further understanding and discovery of 101-84-8

The adoption of solution-processed active layers in the production of thin-alm photovoltaics is hampered by the transition from research fabrication techniques to scalable processing. We report a detailed study of the role of processing in determining the morphology and performance of organic photovoltaic devices using a commercially available, low-solubility, high-molar mass diketopyrrolopyrrole-based polymer donor. Ambient blade coating of thick layers in an inverted architecture was performed to best model scalable processing. Device performance was strongly dependent on the introduction of either o-dichlorobenzene (DCB), 1,8-diiodooctane, or diphenyl ether cosolvent into the chloroform (CHCl3) solution, which were all shown to drastically improve the morphology. To understand the origin of these morphological changes as a result of the addition of the cosolvent, in situ studies with grazing-incidence X-ray scattering and optical reflection interferometry were performed. Use of any of the cosolvents decreases the domain size relative to the single solvent system and moved the drying mechanism away from what is likely liquid-liquid phase separation to solid-liquid phase separation driven by polymer aggregation. Comparing the CHCl3 + DCB cast films to the CHCl3-only cast films, we observed both the formation of small domains and an increase in crystallinity during the evaporation of DCB due to a high nucleation rate from supersaturation. This resulted in percolated bulk heterojunction networks that performed similarly well with a wide range of film thicknesses from 180 to 440 nm, making this system amenable to continuous roll-to-roll processing methods.

Category: ethers-buliding-blocks. About Diphenyl oxide, If you have any questions, you can contact Pelse, I; Hernandez, JL; Engmann, S; Herzing, AA; Richter, LJ; Reynolds, JR or concate me.

Reference:
Ether – Wikipedia,
,Ether | (C2H5)2O – PubChem