Recommanded Product: Diphenyl oxide. Authors Gorginpour, F; Zali-Boeini, H in ELSEVIER published article about in [Gorginpour, Forough; Zali-Boeini, Hassan] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran in 2021, Cited 72. The Name is Diphenyl oxide. Through research, I have a further understanding and discovery of 101-84-8
A quinoxaline-based porous organic polymer (Q-POP) as a mesoporous organic copolymer was developed as a new platform for the immobilization of CuNPs and copper nanocrystals. The prepared materials were characterized by FT-IR, XRD, N-2 adsorption-desorption isotherms, ICP, TGA, SEM, HR-TEM, EDX, and single-crystal X-ray crystallography. The obtained catalyst presented extraordinary catalytic activity towards Ullmann C-O coupling reactions with high surface area, hierarchical porosity, and excellent thermal and chemical stability. Due to its high porosity, and synergistic effect of copper nanocrystals incorporated in the polymer composite, the as-synthesized catalyst was successfully utilized for the Ullmann C-O coupling reaction of phenols and different aryl halides to prepare various diaryl ether derivatives. All types of aryl halides (except aryl fluorides) were screened in the Ullmann C-O coupling reaction with phenols to produce diaryl ethers in good to excellent yields (70-97 %), and it was found that aryl iodides have the best results. Besides, due to the strong interactions between CuNPs, N, and O-atoms of quinoxaline moiety existing in the polymeric framework, the copper leaching from the support was not observed. Furthermore, the catalyst was recycled and reused for five consecutive runs without significant activity loss.
Welcome to talk about 101-84-8, If you have any questions, you can contact Gorginpour, F; Zali-Boeini, H or send Email.. Recommanded Product: Diphenyl oxide
Reference:
Ether – Wikipedia,
,Ether | (C2H5)2O – PubChem