Extracurricular laboratory: Synthetic route of 82830-49-7

The synthetic route of 82830-49-7 has been constantly updated, and we look forward to future research findings.

Electric Literature of 82830-49-7, These common heterocyclic compound, 82830-49-7, name is 2-Fluoro-1,4-dimethoxybenzene, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

EXAMPLE FIFTY-EIGHT: Synthesis of Ligand 24 (Figure 17); In a round-bottomed flask nBuLi (10 mmol, 4 rnL of a 2.5 M solution in hexanes) was added drop-wise to a solution of 1 ,4-dimethoxyfluorobenzene (10 mmol, 1.56 g) in THF (120 mL) at -78 0C. The mixture was stirred at -78 0C for a further 30 min, generating solution A. nBuLi (20 mmol, 8 mL of a 2.5 M solution in hexanes) was added drop-wise to a solution of 2,3-benzofuran (20 mmol, 2.36 g, 2.20 mL) in THF (30 mL) at 0 0C. After 2 h at this temperature the mixture was cooled to -78 0C and magnesium bromide (20 mmol, 3.68 g) added and this mixture stirred until the solid dissolved. This solution was then added via cannula to solution A and the mixture maintained at -78 0C for 1 h. The solution was then allowed to warm to room temperature overnight. The solution was then cooled to 0 0C and a solution of iodine (12 mmol, 3.5 g) in THF added via cannula. The mixture was allowed to warm to room temperature and sodium sulfite (saturated aq. solution) added. The mixture was extracted with EtOAc, the organic layer washed (water, then brine), dried and the solvent removed under reduced pressure. The residue was purified in 2 batches by column chromatography on a Biotage SP4 (hexane-EtOAc, 98:2 – 80:20) to give the iodide.

The synthetic route of 82830-49-7 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; MASSACHUSETTS INSTITUTE OF TECHNOLOGY; WO2009/76622; (2009); A2;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem