The synthetic route of 101-84-8 has been constantly updated, and we look forward to future research findings.
Electric Literature of 101-84-8, These common heterocyclic compound, 101-84-8, name is Diphenyl oxide, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.
Comparative Example; A 500 milliliter four-neck round bottom flask was fitted with a mechanical stirrer, a double walled reflux condenser, a thermocouple, a temperature controller, a heating mantle, and a syringe pump fitted with a Teflon needle. The flask was vented to a water trap for collection of by-product hydrogen bromide. Dry bromine (929.5 grams, 5.82 moles, 200% excess) was charged into the reaction flask, followed by 4.1 grams of aluminum chloride (0.031 mole). The reaction was stirred for 5 minutes.Addition of 33.0 grams (0.19 mole) of diphenyl ether was initiated to the bromine-catalyst mixture at a temperature of 25C. The diphenyl ether addition was maintained at a constant rate by use of a syringe pump over a period of about 180 minutes. The reaction temperature was allowed to increase by way of exotherm to about 35C. Additional heat was applied after the diphenyl ether addition had been completed, and the reaction temperature increased to about 59C within about 20 minutes. After 180 minutes of post addition heating, the heat input was removed and the reaction allowed to cool to room temperature in about 90 minutes.A two liter four-neck round bottom flask was fitted with a mechanical stirrer, a distilling head, a double walled reflux condenser, a thermocouple, a temperature controller, and a heating mantle. One liter of water and the reaction slurry were charged to the flask and the excess bromine was distilled off until a temperature of 100C was achieved.Decabromodiphenyl ether was filtered from the aqueous slurry, washed with water, and dried at 100 C. in a forced air oven.Gas chromatographic analysis of the resulting product showed decabromodiphenyl ether 96.93 area percent, nonabromodiphenyl ether isomers totaling 2.79%, octabromodiphenyl ether isomers totaling 0.25%, and heptabromodiphenyl ether isomers totaling 0.02%.; Example 1; A two liter four-neck round bottom flask was fitted with a mechanical stirrer, a double walled reflux condenser, a thermocouple, a temperature controller, a heating mantle, and a syringe pump fitted with a Teflon needle. The flask was vented to a water trap for collection of by-product hydrogen bromide. Dry bromine (3,410 grams, 21.34 moles, 1000% excess) was charged into the reaction flask, followed by 17.9 grams of aluminum chloride (0.13 mole). The reaction was stirred for five minutes.Addition of 33.0 grams (0.19 mole) of diphenyl ether was initiated to the bromine-catalyst mixture at a temperature of 25 C. The diphenyl ether addition was maintained at a constant rate by use of a syringe pump over a period of about 60 minutes. The reaction temperature was allowed to increase by way of exotherm to about 35 C. Additional heat was applied after the diphenyl ether addition had been completed, and the reaction temperature increased to about 59 C. within about 20 minutes. After about 60 minutes of post addition heating, the heat input was removed and the reaction allowed to cool to room temperature in about 90 minutes.A three liter four-neck round bottom flask was fitted with a mechanical stirrer, a distilling head, a double walled reflux condenser, a thermocouple, a temperature controller, and a heating mantle. One liter of water and the reaction slurry were charged to the flask and the excess bromine was distilled off until a temperature of 100 C. was achieved.Decabromodiphenyl ether was filtered from the aqueous slurry, washed with water, and dried at 100 C. in a forced air oven.Gas chromatographic analysis of the resulting product showed decabromodiphenylether 99.95 area percent, nonabromodiphenyl ether isomers totaling 0.05%, with no other isomers present.; Example 2; The procedure of Example 1 was repeated except that the amount of aluminum chloride was reduced to 6.2 grams (0.047 mole).Gas chromatographic analysis of the resulting product showed decabromodiphenylether 99.90 area percent and nonabromodiphenyl ether 0.1%, with no other isomers present.; Example 3; A two liter four-neck round bottom flask was fitted with a mechanical stirrer, a double-walled reflux condenser, a thermocouple, a temperature controller, a heating mantle, and a syringe pump fitted with a Teflon needle. The flask was vented to a water trap for collection of by-product hydrogen bromide. Dry bromine (3410.1 grams, 21.34 moles, 1000% excess) was charged into the reaction flask, followed by 6.5 grams of aluminum chloride (0.049 mole). The reaction was stirred for five minutes.Addition of 33.0 grams (0.19 mole) of diphenyl ether was initiated to the bromine-catalyst mixture at a temperature of 25 C. The diphenyl ether addition was maintained at a constant rate by use of a syringe pump over a period of about 60 minutes. The reaction temperature was allowed to increase by way of exotherm to about 31 C. Additional heat was applied after the diphenyl ether addition had been completed, and the reaction temperature increased to about 59 C. within about 20 minutes. After about 24 hours of post…
The synthetic route of 101-84-8 has been constantly updated, and we look forward to future research findings.